

# UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DE SERRA TALHADA CURSO BACHARELADO EM ENGENHARIA DE PESCA

# EFEITO DE DENSIDADES DE ESTOCAGEM NA DISPONIBILIDADE DE ALIMENTO NATURAL EM BERÇÁRIO DE CAMARÃO *Litopenaeus vannamei* (BOONE, 1931) CULTIVADO COM TECNOLOGIA DE BIOFLOCO

**JORGE LUIZ DA SILVA SANTOS** 

**SERRA TALHADA** 

2018

# UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DE SERRA TALHADA CURSO BACHARELADO EM ENGENHARIA DE PESCA

EFEITO DE DENSIDADES DE ESTOCAGEM NA DISPONIBILIDADE DE ALIMENTO NATURAL EM BERÇÁRIO DE CAMARÃO *Litopenaeus vannamei* (BOONE, 1931) CULTIVADO COM TECNOLOGIA DE BIOFLOCO

## **JORGE LUIZ DA SILVA SANTOS**

Trabalho de Conclusão de Curso apresentado ao curso de Engenharia de Pesca da Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, como parte dos requisitos para obtenção do título de Engenheiro de Pesca.

Orientador: Prof. Dr. Ugo Lima Silva

**SERRA TALHADA** 

2018

# Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca da UAST, Serra Talhada - PE, Brasil.

#### S237e Santos, Jorge Luiz da Silva

Efeitos de densidades de estocagem na disponibilidade de alimento natural em berçário de camarão *Litopenaeus vannamei* (Boone, 1931) cultivado com tecnologia de biofloco / Jorge Luiz da Silva Santos. – Serra Talhada, 2018.

39f.: il.

Orientador: Ugo Lima Silva

Trabalho de Conclusão de Curso (Graduação em Bacharelado em Engenharia de Pesca) — Universidade Federal Rural de Pernambuco. Unidade Acadêmica de Serra Talhada, 2018.

Inclui referências, apêndice e anexo.

1. Zooplâncton. 2. Fitoplâncton. 3. Camarão - Criação Sustentabilidade. I. Silva, Ugo Lima, orient. II. Título.

CDD 639

# UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DE SERRA TALHADA CURSO BACHARELADO EM ENGENHARIA DE PESCA

Parecer da banca examinadora da defesa de Monografia de graduação em Engenharia de Pesca de Jorge Luiz da Silva Santos.

Título: Efeito de densidades de estocagem na disponibilidade de alimento natural em berçário de camarão *Litopenaeus vannamei* (Boone, 1931) cultivado com tecnologia de biofloco.

Orientador: Prof. Dr. Ugo Lima Silva

A banca examinadora composta pelos membros abaixo, sob a presidência do primeiro, considera o aluno Jorge Luiz da Silva Santos do curso de Engenharia de Pesca, da Universidade Federal Rural de Pernambuco da Unidade Acadêmica de Serra Talhada, como APROVADO.

Serra Talhada, PE

Banca examinadora:

\_\_\_\_\_

Prof. Dr. Ugo Lima Silva

Unidade Acadêmica de Serra Talhada, UFRPE.

Prof. Me. Elton José de Franca

Unidade Acadêmica de Serra Talhada, UFRPE.

\_\_\_\_\_

Engenheiro de Pesca Me. Marcus Vinicius Lourenço de Mello

Unidade Acadêmica de Serra Talhada, UFRPE

| Aos meus Pais, José Elias e Maria Izabel, por sua dedicação, amor e inspiração, que sem vocês nada disso poderia ter acontecido; |
|----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
| Aos meus irmãos, Lívia e Luciano, pelo amor e companheirismo;                                                                    |
|                                                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
| Aos meus avôs Marluce e Luiz "in memoria", por ser inspiração e pelo amor.                                                       |
|                                                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
|                                                                                                                                  |
| DEDICO                                                                                                                           |

#### **AGRADECIMENTOS**

Á minha família, meu pai José Elias, minha mãe Izabel, minha irmã Lívia e irmão Luciano pelo apoio e ajuda durante a minha vida apesar das dificuldades que passamos.

Aos meus familiares, avó Marluce a todos os meus tios, tias, primos e primas que sempre tiveram esperança em mim.

Ao meu orientador, prof. Dr. Ugo Lima Silva por sua orientação, incentivo, confiança e apoio.

A universidade Federal Rural de Pernambuco, a Unidade Acadêmica de Serra Talhada, principalmente aos docentes do curso de engenharia de pesca, esses que possibilitaram o meu crescimento profissional e pessoal. Em especial o prof. Dr. Dario Rocha Falcon por sua dedicação, orientação e conhecimento transferido durante a graduação.

Ao Laboratório de Experimentação com Organismos Aquáticos (LEOA), da unidade acadêmica de Serra Talhada e seus coordenadores Prof. Dr. Ugo Lima Silva e Prof. Dr. Dario Rocha Falcon, pela grande contribuição na minha formação profissional, bem como pessoal, pelas oportunidades e ensinamentos. Pelos seus estagiários, em especial Maria Aparecida, Diego Carvalho, Alexandre Honório, Wagner e João Lucas pela dedicação, companheirismo e conhecimento transmitido, ao Engenheiro de Pesca da UAST, Me. Marcus Vinicius Lourenço de Mello pela contribuição e transmissão conhecimento para a realização deste trabalho.

Á todos os meus amigos, colegas, companheiros de estudo que de alguma forma me deram força para iniciar e finalizar mais essa etapa de minha vida.

Meu agradecimento á todos que compõem a banca examinadora, por aceitar o convite para avaliação deste trabalho, pela disponibilidade e contribuição.

E á todos os funcionários e técnicos da UAST que de forma direta e indireta contribuíram para a realização deste trabalho.

# LISTA DE TABELAS

| Tabela 1. | Valores médios ± desvio padrão dos parâmetros de qualidade de água   |    |  |
|-----------|----------------------------------------------------------------------|----|--|
|           | no berçário de camarão marinho em sistema de biofloco                | 23 |  |
| Tabela 2. | Valores médios ± desvio padrão do desempenho zootécnico do           |    |  |
|           | camarão na fase de berçário submetido à diferentes densidades de     |    |  |
|           | estocagem                                                            | 25 |  |
| Tabela 3. | Abundancia relativa do zooplâncton (%), no berçário do L. vannamei   |    |  |
|           | em diferentes densidades de estocagem                                | 26 |  |
| Tabela 4. | Abundancia relativa do fitoplâncton (%) no berçário de camarão $L$ . |    |  |
|           | vannamei cultivado em diferentes densidades de estocagem             | 31 |  |

# LISTA DE FIGURAS

| Figura 1. | Tanques usados no experimento de berçário do camarão                            |    |
|-----------|---------------------------------------------------------------------------------|----|
|           | Litopenaeus vannamei com diferentes densidades de estocagem                     | 18 |
| Figura 2. | Balança de precisão utilizada para avaliação do crescimento zootécnico das pós- |    |
|           | larvas em berçário com tecnologia de biofloco                                   | 19 |
| Figura 3. | Cone de sedimentação Imhoff usado no experimento para medir os                  |    |
|           | sólidos sedimentares formados no biofloco nas diferentes                        |    |
|           | densidades de estocagem                                                         | 20 |
| Figura 4. | Microscópio óptico utilizado nas analises quantitativas e                       |    |
|           | qualitativas de fito e zooplâncton na água de berçário do camarão ${\it L}$ .   |    |
|           | vannamei com diferentes densidades de estocagem                                 | 22 |
| Figura 5. | Gêneros dominantes do zooplâncton identificados no berçário de $\it L$ .        |    |
|           | vannamei em diferentes densidades de estocagem. A) Aspidisca sp.;               |    |
|           | B) Euplotes sp. e C) Trinema spp                                                | 27 |
| Figura 6. | Principais gêneros de rotíferos identificados no berçário do camarão            |    |
|           | L. vannamei com diferentes densidades de estocagem. A) Lepadella                |    |
|           | spp. e B) Lecane spp                                                            | 28 |
| Figura 7. | Variação das densidades populacionais do zooplâncton no berçário                |    |
|           | de camarão com biofloco, com diferentes densidades de estocagem.                | 29 |
| Figura 8. | Variação das densidades populacionais do fitoplânton no berçário                |    |
|           | de camarão com biofloco, com diferentes densidades de estocagem.                | 34 |
| Figura 9. | Principais gêneros de Bacillariophyta identificados no berçário do              |    |
|           | camarão L. vannamei com diferentes densidades de estocagem. A)                  |    |
|           | Navicula spp. e B) Cyclotella sp                                                | 32 |

#### LISTA DE ABREVIATURAS E SIGLAS

% – Porcentagem.

%C – Porcentagem de carbono.

%N – Porcentagem de nitrogênio.

°C – Graus celsius.

ΔMelaço – Variação de melaço.

ΔN – Variação de nitrogênio.

μm – Micrômetro.

C:N – Carbono:Nitrogênio.

CV - Cavalo-Vapor.

 $D_2 - 2 PLs.L^{-1}$ 

 $D_4 - 4 PLs.L^{-1}$ 

 $D_6 - 6 PLs.L^{-1}$ 

g – Gramas.

g.L<sup>-1</sup> – Gramas por litro

ind.mL<sup>-1</sup> – Indivíduos por mililitro.

Kg.m<sup>-3</sup> – quilogramas por metro cubico.

L-Litro.

N – Nitrogênio.

mg.L<sup>-1</sup> – Miligramas por litro.

mg – Miligramas

mL - Mililitro.

 $N^{\circ}$  Org. $L^{-1}$  – Numero de organismos por litro.

nº células.mL<sup>-1</sup> – Numero de células por mililitro.

P – Fosforo.

PVC – Cloreto de polivinila.

pH – Potencial de hidrogeniônico.

PLs.L<sup>-1</sup> – Pós-Larvas por litro.

RN – Rio Grande do Norte.

t.ha<sup>-1</sup> – Toneladas por hectare.

UFRPE – Universidade Federal Rural de Pernambuco.

UNT – Unidade Nefelométrica de Turbidez.

Kg.ha<sup>-1</sup>.ano<sup>-1</sup>– Quilogramas por hectare ano.

#### **RESUMO**

O objetivo desse trabalho foi determinar os principais componentes do alimento natural planctônico no berçário do camarão L. vannamei com tecnologia de biofloco. O experimento ocorreu durante 28 dias e adotou-se um delineamento casualizado, com três densidades de estocagem de pós-larvas, D<sub>2</sub>: 2 PLs.L<sup>-1</sup>, D<sub>4</sub>: 4 PLs.L<sup>-1</sup> e D<sub>6</sub>: 6 PLs.L<sup>-1</sup>, com quatro repetições cada, utilizando melaço como fonte de carbono, na relação C:N de 15:1. As coletas foram realizadas semanalmente, com amostragens de 2 litros de água em cada tanque, que foram filtradas com rede de plâncton e concentrados em 250 mL. Foi realizado o estudo qualitativo e quantitativo do plâncton com sub-amostras de 1 mL para o zooplâncton., na câmara de Sedgwick-Rafter (ind.L-1). O fitoplâncton foi avaliado em lâminas e lamínulas (nº células.mL-1) analisando 0,1 mL, ambos em microscópio óptico. Os valores de temperatura mantiveram-se próximas dos 22°C, temperatura abaixo do ideal para o cultivo do L. vannamei, já que a faixa adequada para esta espécie é entre 26 a 33°C, porém o oxigênio dissolvido esteve em condições ideais para o seu cultivo, que devem estar acima de 4,0 mg.L<sup>-1</sup> e durante o experimento manteve-se acima de 8 mg.L<sup>-1</sup>. O desenvolvimento do camarão não apresentou diferença entre os tratamentos, para a variável peso final, já a sobrevivência, o tratamento D<sub>2</sub> obteve a maior sobrevivência (>72%) sendo a produção no D<sub>6</sub> maior que nos demais tratamentos (2,98 Pls.L<sup>-1</sup>). A comunidade zooplanctônica nos tanques de berçário esteve representada por 23 gêneros, distribuída entre os grupos Rotífera, Protozoa, Nematoda, Platelmintos e Cladocera. O grupo Protozoa foi o que mais apresentou diversificação, independente do tratamento, e também foi o que apresentou a maior abundancia (>66%). Os principais gêneros de Protozoa foram Aspidisca, Euplotes e *Trinema*, já a comunidade fitoplantônica esteve composta por 16 gêneros, distribuídos nas classes Chlorophyceae, Bacillariophyta, Cyanophyceae e Dinophyceae, a classe dominante foi a Bacillariophyta (>41%), com os gêneros Navicula e Cyclotella. A densidade de 4 PLs.L<sup>-1</sup> foi a que proporcionou a maior densidade de zooplâncton, porém para o fitoplâncton a densidade de 6 PLs.L-1 foi a que apresentou a maior quantidade.

Palavras-chave: Zooplâncton, fitoplâncton, carcinicultura.

## **ABSTRACT**

The objective of this work was to determine the main components of planktonic food in the nursery of shrimp L. vannamei with biofloc technology. The experiment was carried out for 28 days and a randomized design with three post-larval storage densities, D<sub>2</sub>: 2 PLs. L<sup>-1</sup>, D<sub>4</sub>: 4 PLs. L<sup>-1</sup> and D<sub>6</sub>: 6 PLs.L<sup>-1</sup>, with four replicates each, using molasses as carbon source, in the C: N ratio of 15: 1. Samples were collected weekly, with 2 liters of water in each tank, which were filtered with plankton net and concentrated in 250 mL. The qualitative and quantitative study of plankton with 1 mL sub-samples for zooplankton was carried out in the Sedgwick-Rafter chamber (ind.L-1). The phytoplankton was evaluated in slides and coverslips (no cells.mL-1) analyzing 0,1 mL, both under light microscope. The temperature values remained close to 22 ° C, below the ideal temperature for L. vannamei cultivation, since the appropriate range for this species is between 26 to 33°C, but the dissolved oxygen was in the ideal conditions for its culture, which should be above 4.0 mg.L<sup>-1</sup> and during the experiment remained above 8 mg.L<sup>-1</sup>. The development of shrimp did not show any difference between the treatments, for the final weight variable, since the survival, the D2 treatment obtained the highest survival (> 72%) and the production in  $D_6$  was higher than in the other treatments (2.98 Pls.L<sup>-1</sup>). The zooplankton community in the nursery tanks was represented by 23 genera, distributed among the groups Rotifera, Protozoa, Nematoda, Platelmintos and Cladocera. The Protozoa group presented the most diversification, regardless of the treatment, and also presented the highest abundance (> 66%). The main genera of Protozoa were Aspidisca, Euplotes and Trinema, and the phytoplankton community was composed of 16 genera, distributed in the classes Chlorophyceae, Bacillariophyta, Cyanophyceae and Dinophyceae, the dominant class Bacillariophyta (> 41%), with the genera Navicula and Cyclotella. The density of 4 PL.L<sup>-1</sup> gave the highest density of zooplankton, but for the phytoplankton the density of 6 PLs.L<sup>-1</sup> was the one with the highest amount.

**Keywords**: Zooplankton, phytoplankton, shrimpfarming

# **SUMÁRIO**

| DEDICÁTORIA                                    |    |
|------------------------------------------------|----|
| AGRADECIMENTOS                                 |    |
| LISTA DE TABELAS                               |    |
| LISTA DE FIGURAS                               |    |
| LISTA DE ABREVIATURAS E SIGLAS                 |    |
| RESUMO                                         |    |
| ABSTRACT                                       |    |
| 1. INTRODUÇÃO                                  | 11 |
| 2. REVISÃO DE LITERATURA                       | 12 |
| 2.1. Carcinicultura no Brasil                  | 12 |
| 2.2. Sistemas de produção.                     | 13 |
| 2.3. Alimento natural                          | 14 |
| 3. OBJETIVOS                                   | 17 |
| 3.1. Objetivo geral                            | 17 |
| 3.2. Objetivos específicos                     | 17 |
| 4. MATERIAL E MÉTODOS                          | 18 |
| 4.1. Instalações experimentais                 | 18 |
| 4.2. Obtenção e alimentação das pós-larvas     | 19 |
| 4.3. Avaliação do crescimento das pós-larvas   | 19 |
| 4.4. Análise de qualidade da água              | 19 |
| 4.5. Procedimentos e delineamento experimental | 20 |
| 4.6. Avaliação planctônica                     | 21 |
| 4.7. Análise estatística                       | 22 |
| 5. RESULTADOS E DISCUSSÃO                      | 23 |
| 5.1. Qualidade da água                         | 23 |
| 5.2. Desempenho de crescimento                 | 25 |
| 5.3. Comunidade zooplanctônica                 | 26 |
| 5.4. Comunidade fitoplanctônica                | 31 |
| 6. CONCLUSÃO                                   | 35 |
| 7 DEEEDÊNCIAS RIRI IOCDÁFICAS                  | 35 |

# 1. INTRODUÇÂO

O sistema sem renovação de água biofloco tem a vantagem da redução na troca de água dos viveiros, diminuindo assim a emissão de efluentes e minimizando prováveis danos da atividade ao meio ambiente. A aplicação deste sistema de cultivo atende os conceitos de uma aquicultura responsável e ambientalmente correta, além de reduzir risco de introdução e disseminação de doenças (EMERENCIANO et al, 2007). O cultivo com biofloco tem como base o balanço C:N, balanço este que determina a comunidade microbiana que se estabelecerá no sistema (WASIELESKY et al., 2006b). Os flocos microbianos são constituídos principalmente por bactérias, microalgas, fezes, exoesqueletos, restos de organismos mortos, protozoários e invertebrados (KRUMMENAUER et al., 2012), que tem o seu desenvolvimento favorecido pela ração não consumida, as fezes e outros resíduos, como a amônia.

Na aquicultura, a alimentação representa mais de 50% dos custos de produção em sistemas aquícolas (SHIAU e BAI, 2009). Devido ao alto custo com alimentação, existe uma pressão considerável para a redução dos excessos de nutrientes nas formulações das dietas, principalmente os de valor mais elevado. Como a proteína é o nutriente mais caro, é necessário o seu uso racional para viabilizar economicamente a criação. O alimento natural pode ser a melhor forma para a redução desse custo da alimentação, pois participam no balanço nutricional dos viveiros, possui baixo custo de produção e vários estudos têm demonstrado que o alimento natural pode representar a principal fonte nutricional mesmo quando são fornecidas rações comerciais (SOARES et al., 2005).

A comunidade fito e zooplanctônica são também responsáveis pela manutenção do equilíbrio aquático, reciclando os nutrientes. O fitoplâncton nos viveiros desempenha um papel ecológico de grande importância como produtor primário, governando os principais processos físicos e químicos ocorrentes. Estando envolvido na produção de oxigênio dissolvido através da reação de fotossíntese, a assimilação de nutrientes, incluindo a amônia e outros metabólitos tóxicos, que são sequestrados da água e convertidos em compostos orgânicos, melhorando os parâmetros de qualidade da água (BOYD, 1995), e o aporte de nutrientes essenciais que funcionam como fonte alimentar indireta para os camarões cultivados (ALLAN et al., 1995).

Na intensificação do cultivo de *Litopenaeus vannamei* é necessária a presença de uma comunidade planctônica bem desenvolvida, principalmente de diatomáceas e de

zooplâncton, como rotíferos, que lhes fornecem importantes compostos nutricionais como proteínas, lipídeos, carboidratos e vitaminas, que são essenciais à sobrevivência e crescimento dos camarões (MAIA et al., 2003).

O incremento de alimento natural pode ser estimulado através do uso de fertilizantes inorgânicos e/ou orgânicos, que aumentam a disponibilidade de nutrientes no meio aquático. O uso de fertilizantes inorgânicos promove o incremento das algas e os fertilizantes orgânicos suplementam as fontes de carbono, beneficiando o crescimento de bactérias e organismos bentônicos e também estimulando o crescimento do fitoplâncton (BOYD, 1982). A produção de peixe e camarão pode ser consideravelmente incrementada através da aplicação de fertilizantes, podendo aumentar os níveis de produção pela combinação entre fertilizações e alimentação artificial (SILVA et al., 2008).

A realização de pesquisas referentes ao manejo de produção do alimento natural torna-se de suma importância, visto que podem proporcionar uma redução do uso de rações e, consequentemente, do custo de produção. Além disso, pode haver uma melhoria na sobrevivência e no crescimento dos camarões e, principalmente, uma diminuição nos impactos ambientais negativos que o excesso de ração pode ocasionar.

#### 2. REVISÃO DE LITERATURA

### 2.1 Carcinicultura no Brasil

O cultivo de camarões marinhos em escala comercial no Brasil teve início na década de 70, com a introdução da espécie exótica *Marsupenaeus japonicus*, e posteriormente das espécies nativas *Farfantepenaeus brasiliensis*, *Farfantepenaeus subtilis* e *Litopenaeus schmitti*. Porém apenas na década de 90 com a introdução da espécie exótica *Litopenaeus vannamei*, a indústria brasileira começou a ter representatividade na produção mundial de crustáceos (BARBIERI e OSTRENSKY, 2002). A adoção do *L. vannamei* como espécie alvo de cultivo foi decorrente do sua rusticidade, rentabilidade, crescimento, conversão alimentar e grande aceitação no mercado internacional que, aliados às condições edafo-climáticas das diversas macroregiões do Brasil e, de forma especial da Região Nordeste, possibilitaram o desenvolvimento do setor (ANDREATTA e BELTRAME, 2004).

Em 2007 a carcinicultura brasileira foi marcada pelos surtos das doenças da mancha branca (WSSV) em Santa Catarina e da NIM (IMNV) na região Nordeste. Esta crise setorial remonta a 2004 cuja produção de 76.000 t interrompeu um crescimento exponencial médio de 71% ao ano, registrado entre 1997 (3.600 t) e 2003 (90.190 t), sendo que, a partir de 2005, quando se registrou uma nova queda de produção (65.000 t) houve uma estabilização da produção nesse patamar até 2007 (ROCHA, 2007). Apesar das flutuações ocorrentes na produção durante os anos, em 2017 o Brasil produziu cerca 65.000 t de camarões, o mesmo que a 10 anos atrás (ROCHA, 2018).

# 2.2 Sistemas de produção

Os métodos de produção do camarão marinho passaram por três estratégias, na década de 80 com a utilização de viveiros de grandes áreas, baixa densidade de estocagem e produtividades médias em torno de 600 Kg.ha<sup>-1</sup>.ano<sup>-1</sup>. Seguido por melhorias tecnológicas, como a fertilização, o uso de bandejas de alimentação, aumento das densidades de estocagem e produtividade acima de 5.000 Kg.ha<sup>-1</sup>.ano<sup>-1</sup> (WASIELESKY et al., 2006a). Finalmente, na década de 90, houve mais um aumento na intensificação dos cultivos com menores taxas de troca d'água, maior biossegurança e produtividade que superaram a produtividade de 5.000 Kg.ha<sup>-1</sup>.ano<sup>-1</sup> (BURFORD et al., 2003). Nesses sistemas os compostos nutricionais, necessários ao desenvolvimento dos camarões, são supridos por uma combinação de dietas artificiais e organismos vivos, produzidos endogenamente no viveiro (MOSS, 2002).

No sistema semi-intensivo, onde existe algum aporte de fertilizantes externos e/ou nutrientes com uso de dieta suplementar, mas mesmo assim os animais ficam dependentes do consumo de organismos vivos. A contribuição do alimento natural no sistema semi-intensivo para os camarões, pode alcançar até 85% (NUNES et al., 1997). Em viveiros de engorda que operam com produtividades abaixo de 1000 Kg.ha<sup>-1</sup>.ciclo<sup>-1</sup>, as rações satisfazem entre 23% e 47% dos requerimentos nutricionais do *L. vannamei*, sendo o restante suprido pelo alimento natural (ANDERSON et al., 1987).

Atualmente, sistemas sem renovação de água trabalham com densidades de estocagem acima de 60 PL.m<sup>-3</sup>, com alguns empreendimentos chegando a utilizar 500 PL.m<sup>-3</sup>. Cultivos intensivos de camarão são definidos por produções de 0,5 a 1,0 kg.m<sup>-3</sup> (5 a 10 t.ha<sup>-1</sup>), super-intensivo de 1 a 5 kg.m<sup>-3</sup> (10 a 50 t.ha<sup>-1</sup>) e hiper-intensivo com produções acima de 5 kg.m<sup>-3</sup> (McNEIL, 2000).

Com o desenvolvimento da indústria de cultivo de camarão, um dos principais problemas era a dificuldade de prever a sobrevivência das pós-larvas estocadas diretamente no viveiro de engorda. Assim surge o sistema bifásico, que é, uma fase intermediária entre a larvicultura e os viveiros de engorda, chamada berçário, que possibilita a disponibilidade de animais mais resistentes para o povoamento nos viveiros de engorda (NUNES, 2002).

Existem três sistemas de cultivo para a criação de camarão, o monofásico, bifásico e trifásico. O sistema monofásico refere-se ao cultivo sem tanques berçários, e assim o povoamento das pós-larvas é diretamente nos viveiros de engorda. O sistema bifásico é caracterizado, pelo cultivo na primeira fase em tanques berçário e a segunda em viveiro de engorda (ROCHA et al., 1998). No trifásico, primeiramente as pós-larvas são estocadas em tanques berçário de fibra de vidro ou concreto, em densidades que variam de 25 a 80 PL.L<sup>-1</sup>. Na segunda fase, dá-se o cultivo dos juvenis utilizando viveiros berçário de 1 a 2 ha, estocados em densidades de 150 a 250 juvenis.m<sup>-2</sup>. Na última fase, os juvenis são transferidos para viveiros de engorda de 2 a 6 ha, que são povoados com densidades de 20 a 30 juvenis.m<sup>-2</sup> (SEIFFERT et al., 2003). O manejo empregado na carcinicultura apresenta variações entre as fazendas, mas a maioria dos empreendimentos no Brasil adota o sistema bifásico de cultivo (NUNES, 2004).

#### 2.3 Alimento natural

A alimentação influencia diretamente no crescimento e na sobrevivência dos organismos, bem como na viabilidade econômica do cultivo (D´ABRAMO e SHEEN, 1996). O incremento da produtividade aquática para a utilização do alimento natural e minimizar a utilização da ração vem sendo uma preocupação constante no setor da carcinicultura para reduzir os custos com ração e a degradação da qualidade da água (ANDREATTA et al., 2004).

Dos organismos componentes do alimento natural nos viveiros, destacam-se: microorganismos (bactérias e microalgas); zooplâncton (protozoários, cladoceros, copépodos e rotíferos); invertebrados bentônicos; material vegetal e detritos (CORREIA, 1998). A intensificação dos cultivos de *L. vannamei* requer o estabelecimento de uma comunidade planctônica bem desenvolvida, já que esta é utilizada como complemento alimentar, fornecendo-lhes importantes compostos

nutricionais como ácidos graxos, que são essenciais à sobrevivência e crescimento dos camarões (MAIA et al., 2003).

A renovação de água é uma técnica de manejo comum em cultivos de camarão, sendo utilizados para manter adequada a qualidade da água, ajustes de temperatura e salinidade. Viveiros de cultivo no sistema intensivo adotam taxas de renovação de água de 5 a 30% do volume do viveiro por dia (GÓMEZ-JIMÉNEZ et al., 2005), mas causam a liberação de efluentes sem tratamento, que causa perda econômica de nutrientes valiosos, reduzindo a rentabilidade dos cultivos e danos ao meio ambiente.

A utilização de sistemas sem renovação de água tem despertado o interesse dos pesquisadores quanto às propriedades nutricionais dos flocos bacterianos, que são formados durante o ciclo de produção e são constituídos de bactérias, microalgas, excrementos, exoesqueletos, restos de organismos mortos, cianobactérias, protozoários, pequenos metazoários e formas larvais de invertebrados, entre outros (BURFORD et al., 2003). Segundo Burford et al. (2004), mais de 29% do alimento consumido pelo *L. vannamei* pode ser proveniente do floco bacteriano presente no meio heterotrófico (meio onde predomina organismos heterotróficos, mantidos pelo balanço da relação carbono/nitrogênio).

O incremento de alimento natural é estimulado através de fertilizantes inorgânicos e/ou orgânicos, que aumentam a disponibilidade de nutrientes no meio aquático. O uso de fertilizantes inorgânicos (Nitrogênio-N e Fósforo-P) promove o incremento das algas e os fertilizantes orgânicos suplementam as fontes de carbono, beneficiando o crescimento de bactérias e organismos bentônicos e como também o crescimento do fitoplâncton (BURFORD et al., 2003).

Os problemas encontrados nos programas de fertilização utilizados são: inconstância das relações C:N:P; aplicações de doses excessivas de fertilizantes, causando *bloom* de algas indesejáveis; toxinas que podem ser prejudiciais tanto ao cultivo quanto ao homem (KUBITZA, 2003). Frequentemente a aplicação de um mesmo programa de adubação em diferentes fazendas resulta em respostas variáveis quanto à produção e a manutenção do plâncton e dos organismos bentônicos. Isto faz com que as doses adequadas de fertilizantes e a resposta aos programas de adubação sejam específicas para cada propriedade, e até mesmo para cada viveiro dentro da mesma propriedade (KUBITZA, 2003).

Todos os ecossistemas aquáticos possuem duas cadeias alimentares interligadas. Uma, autotrófica, dependente de luz e representada pelo fitoplâncton, e a heterotrófica, não dependente de luz e representada pelos detritos (CORREIA, 1998). Segundo Silva e Souza (1998) organismos heterotróficos são aqueles que não possuem a capacidade de sintetizar seu próprio alimento e necessitam para sua nutrição da presença de matéria orgânica no ambiente.

Nos sistemas com alta renovação de água, estas cadeias autotrófica e heterotrófica são frequentemente retiradas dos sistemas de cultivo, organismos que perderiam ser utilizado como fonte alternativa de alimento para os animais, além de causar alto impacto quando despejados no meio ambiente, assim minimizar a renovação de água é uma parte essencial da carcinicultura moderna e ambientalmente responsável, pois reduz a troca de água e beneficia o produtor baixando custos de bombeamento e diminui a possibilidade de introduzir compostos tóxicos, patógenos, vetores de doenças ou outros organismos indesejáveis no cultivo. Beneficia também o ambiente reduzindo as descargas de nutrientes e de matéria orgânica das fazendas (FAO/NACA/UNEP/WB/WWF, 2006).

Sistemas sem troca de água consistem em estimular a formação de uma biota predominantemente aeróbica e heterotrófica a partir da fertilização com fontes ricas em carbono orgânico (açúcar, melaço, etc.) e aeração constante (EMERENCIANO et al., 2007). O melaço pode ser utilizado na preparação dos viveiros de camarão marinho atuando no controle e redução de bactérias oportunistas do gênero *Vibrio* (BEZERRA et al., 2005) atuando como uma fonte alternativa de carbono para a aqüicultura (SCHNEIDER et al., 2006). Pois possui baixo custo, alta disponibilidade e elementos minerais e vitaminas que podem ser usados para o crescimento das bactérias (SQUIO e ARAGÃO, 2004).

As vantagens desses sistemas são a redução da demanda por água, redução da emissão de efluentes e do impacto ao meio ambiente, controle da qualidade da água, diminuição da conversão alimentar, e controle dos níveis de nitrogênio inorgânico com produção de proteína microbiana, reduzindo a utilização da proteína da ração (WASIELESKY et al., 2006b). Sistemas sem renovação de água demandam altos níveis de aeração e mistura da água, necessários para conter a crescente demanda por oxigênio, resultado da intensa atividade bacteriana (ERLER et al., 2005).

Vários processos microbianos podem ser utilizados para reduzir os níveis de amônia nos ambientes de cultivo. Estes processos incluem a nitrificação, desnitrificação, mineralização, fotossíntese e o crescimento de bactérias heterotróficas (BRUNE et al., 2003). Os sistemas de cultivo tradicionais estão baseados na biossíntese das algas (sistema fotoautotrófico) para remover a maior parte do nitrogênio inorgânico (CRAB et al., 2007). A grande desvantagem deste sistema é a variação diurna de oxigênio dissolvido, pH e nitrogênio amoniacal e, em longo prazo, as constantes mortes e as mudanças nas densidades das algas (BURFORD et al., 2003).

A conversão biológica da amônia em nitrito é desenvolvida por bactérias que oxidam a amônia, que incluem bactérias do gênero *Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, e Nitrosovibrio*; já a subseqüente oxidação, do nitrito em nitrato, é realizada por bactérias que oxidam o nitrito, que são do gênero *Nitrobacter, Nitrococcus, Nitrospira e Nitrospina* (EBELING et al., 2006). Quanto ao nitrato, este pode ser convertido em gás nitrogênio através da ação de bactérias denitrificadoras e volatilizado para a atmosfera (BOYD e QUEIROZ, 2001).

Os principais fatores que influenciam na taxa de nitrificação são as concentrações de amônia e nitrito, a relação carbono/nitrogênio, o oxigênio dissolvido, o pH, a temperatura e a alcalinidade (EBELING et al., 2006). Ao contrário das algas, populações microbianas são mais estáveis e independem de condições luminosas (AVNIMELECH, 2006).

A relação C:N ideal para formação do floco microbiano, está relacionada à disponibilidade e competição por carbono orgânico e amônia. Para uma alta relação C:N, bactérias heterotróficas competem com as autotróficas por oxigênio dissolvido e espaço. Quando há uma baixa relação C:N, as bactérias autotróficas são privilegiadas (MICHAUD et al., 2006), com isto a relação C:N, deve situar-se entre 14 e 30:1.

## 3. OBJETIVOS

#### 3.1 Geral

Determinar os principais componentes do alimento natural (plâncton) em função da densidade de estocagem no berçário do camarão marinho *Litopenaeus vannamei* em tecnologia biofloco.

# 3.1 Específicos

Avaliar a influencia do alimento natural no crescimento dos camarões.

Identificar a densidade de estocagem que propicia a maior disponibilidade de alimento natural.

Analisar a qualidade da água durante o berçário do camarão.

## 4. MATERIAL E METODOS

## 4.1 Local e instalações Experimentais

O cultivo das pós-larvas de camarão *L. vannamei* com tecnologia de biofloco foi realizado no Laboratório de Experimentação de Organismos Aquáticos (LEOA), Unidade Acadêmica de Serra Talhada (UAST) da Universidade Federal Rural de Pernambuco (UFRPE), localizada na Mesorregião do Sertão Pernambucano. Foram utilizados 12 tanques circulares de polietileno com volume útil de 15 L cada no experimento (Figura 1), todos os tanques foram aerados 24 horas por dia, por meio de um compressor radial de ¾ CV, tubulações e conexões de PVC e pedras porosas. A água com biofloco foi proveniente de cultivos anteriores e a água usada para reposição das perdas por evaporação foi de poço artesiano, que foi filtrada por hidro filtro, com grau de filtragem de 5µm, antes de entrar do sistema de cultivo.



**Figura 1.** Tanques usados no experimento de berçário do camarão *Litopenaeus vannamei* com diferentes densidades de estocagem.

## 4.2 Obtenção e alimentação das pós-larvas

As pós-larvas foram provenientes de larvicultura comercial, localizada na Barra de Cunhaú, Canguaretama, RN. Os animais foram transportados em sacos plásticos e mantidos em tanques de 500 L para quarentena antes de iniciar a experimentação. As pós-larvas em estágio  $PL_{10}$ , apresentavam peso médio de  $0,005 \pm 0,001$  g.

Os camarões foram alimentados diariamente numa frequência alimentar de seis (06) tratos diários. Foi utilizada uma ração comercial com 40 % de proteína bruta, utilizando 10% da biomassa para calculo de oferta de ração.

## 4.3 Avaliação do crescimento

As biometrias foram realizadas no inicio e final do experimento, a qual foi utilizada uma de balança de precisão (d=0,001g), para mensuração do peso médio inicial das pós-larvas que iniciaram no experimento e dos juvenis produzidos no final.



**Figura 2.** Balança de precisão utilizada para avaliação do crescimento zootécnico das pós-larvas em berçário com tecnologia de biofloco.

# 4.4 Analise de qualidade da água

Durante o período do experimento a qualidade da água foi monitorada duas vezes ao dia, uma pela manhã e outra ao final da tarde, as variáveis físico-químicas analisadas da água foram: temperatura (°C), oxigênio dissolvido (mg.L<sup>-1</sup>), salinidade (g.L<sup>-1</sup>) e potencial Hidrogeniônico (pH), essas analises ocorreram com uso de multiparâmetro (YSI ProPlus). A analise dos sólidos sedimentares foi feitas com cone de sedimentação Imhoff (Figura 3), que era preenchido com 1000 mL da água do tanque e após 20 min era feita a leitura do resultado, a turbidez foi analisado com turbidímetro Alfakit.



**Figura 3**. Cone de sedimentação Imhoff usado no experimento para medir os sólidos sedimentares formados no biofloco nas diferentes densidades de estocagem.

## 4.5 Procedimentos e delineamento experimental

Para indução do meio heterotrófico, as quantidades de carboidratos foram adicionadas aos tratamentos até a formação do meio heterotrófico, sendo calculadas com base nas relações de carbono:nitrogênio (C:N) requeridas, na quantidade de nitrogênio da ração convertida em amônia (ΔN) e no conteúdo de carbono no melaço (%C), de acordo com as Equações 1 e 2:

$$\Delta$$
Melaço = [ $\Delta$ N x (C:N)] x %C-1 (1);

 $\Delta N = QRação x %NRação x %NExcreção (2).$ 

Onde: QRação é a quantidade de ração ofertada diariamente; %NRação é a quantidade de nitrogênio inserido no sistema (%Proteína Bruta x 6,25<sup>-1</sup>), e; %NExcreção é o fluxo de amônia na água, diretamente da excreção ou indiretamente pela degradação microbiana de resíduos de nitrogênio orgânico. A quantidade de carboidratos adicionada em cada unidade experimental para atender as requeridas relações C:N nos tratamentos será calculada usando-se as Equações 1 e 2, as quais foram adaptadas de estudos realizados por Avnimelech (2009).

Foi adotado um delineamento experimental casualizado com três densidades de estocagem: D<sub>2</sub>: 2 PLs.L<sup>-1</sup>, D<sub>4</sub>: 4 PLs.L<sup>-1</sup>e D<sub>6</sub>: 6 PLs.L<sup>-1</sup>, com quatro repetições cada. No período de 22 de julho a 18 de agosto de 2017. Para estimular a formação dos agregados microbianos, foi acrescentado melaço, uma vez por dia, na relação C:N de 15:1.

# 4.6 Avaliação planctônica

O experimento ocorreu durante 28 dias (4 semanas), e semanalmente ocorriam as coletas de plâncton, com amostragens de 2 (dois) litros de água de cada tanque do experimento, utilizando-se um recipiente de boca larga no sentido fundo-superfície (coluna d'água). Estas amostras foram filtradas com rede de plâncton (malha de 20 µm) e concentrados em 250 mL, previamente identificados e fixadas com formol a 4% neutralizado com bórax a 1%.

Para o estudo qualitativo e quantitativo do zooplâncton, foi utilizado o método de contagem direta, segundo Newell e Newell (1963), realizado homogeneizando e retirando uma sub-amostras de 1 ml retiradas das amostras filtradas (250 mL), com auxílio de pipeta Pasteur, transferida para uma câmara Sedgewick-Rafter (ind.L<sup>-1</sup>) e analisada com lente de aumento de 10x. O fitoplâncton foi estudado em lâminas recobertas com lamínulas (nº células.mL<sup>-1</sup>), retirando-se uma sub-amostras de 0,1 ml, ambos em microscópio óptico (Figura 4), com auxílio de bibliografia especializada e analisado com a lente de aumento de 10x e suposta ampliação para a lente de 40x para identificação.



**Figura 4**. Microscópio óptico utilizado nas analises quantitativas e qualitativas de fito e zooplâncton na água de berçário do camarão *L. vannamei* com diferentes densidades de estocagem.

Para obtenção das quantidades de organismos planctônicos presente em cada litro (zooplâncton) e mililitro (fitoplâncton) de água do cultivo, foi utilizado à equação abaixo.

$$N^{\circ} Org. L^{-1} = \underbrace{N \times V}_{Va \times Vt}$$

Onde: "N" equivale a quantidade de indivíduos contados em cada ml analisado, "V" é o volume da amostra, "Va" é o volume analisado da amostra e "Vt" é o volume total filtrado para se obter a amostra.

#### 4.7 Análise estatística

Foi realizada a comparação dos valores da qualidade de água (temperatura, oxigênio dissolvido, salinidade, sólidos sedimentares, turbidez e pH) e crescimento das pós-larvas (peso final, sobrevivência e produção) através do teste "t" com nível de significância de 5%. Valores maiores de que 0,05 demonstravam que não havia ocorrido diferença estatística entre os tratamentos, já valores menores que 0,05 mostravam que havia ocorrido significância entre os valores obtidos e assim ocorria diferença entre os tratamentos comparados.

Para os grupos de fito e zooplanctônicas foi realizado calculosa de densidade populacional e abundancia relativa.

#### 5. RESULTADOS E DISCUSSÃO

#### 5.1. Qualidade da água

Os valores das variáveis de qualidade de águas estão representados na tabela 1, sendo que não ocorreram diferenças estatísticas entres os tratamentos para as variáveis de temperatura (°C), salinidade (g.L<sup>-1</sup>) e turbidez (UNT). Já para as variáveis, pH e oxigênio dissolvido (mg.L<sup>-1</sup>) os tratamentos D<sub>4</sub> e D<sub>6</sub> apresentaram os melhores resultados, diferenciando do tratamento D<sub>2</sub>. Os sólidos sedimentares (mL.L<sup>-1</sup>) no tratamento D<sub>6</sub> apresentou diferença estatísticas e assim o maior valor dentre os tratamentos, isso pode ter ocorrido devido a maior quantidade de ração que era adicionado ao sistema, já que era o tratamento que possuía a maior densidade de estocagem no experimento e assim a maior biomassa.

**Tabela 1**. Valores médios ± desvio padrão dos parâmetros de qualidade de água no berçário de camarão marinho em sistema de biofloco.

| Variáveis                                    | Tratamentos                |                      |                           |
|----------------------------------------------|----------------------------|----------------------|---------------------------|
| v ar ia veis                                 | $D_2$                      | $\mathbf{D}_4$       | $\mathbf{D}_{6}$          |
| Temperatura (°C)                             | $21,90^a \pm 0,93$         | $22,34^{a} \pm 0,94$ | $21,07^a \pm 0,90$        |
| Oxigênio dissolvido (OD mg.L <sup>-1</sup> ) | $8,61^a \pm 0,61$          | $8,75^{b} \pm 0,86$  | $8,76^{ab} \pm 0,76$      |
| Salinidade (g.L <sup>-1</sup> )              | $2,80^{a} \pm 0,04$        | $4,92^{a}\pm0,03$    | $2,78^{a} \pm 0,03$       |
| Sólidos sedimentares (mL.L <sup>-1</sup> )   | $4,05^{a} \pm 2,36$        | $5,75^{a} \pm 3,69$  | $14,88^{\rm b} \pm 12,42$ |
| Turbidez (UNT)                               | 33,24 <sup>a</sup> ± 17,58 | $34,51^a \pm 17,69$  | $42,84^{a}\pm27,93$       |
| рН                                           | $8,08^{a}\pm0,12$          | $8,03^{b} \pm 0,08$  | $8,03^{b}\pm0,13$         |

Letras diferentes na mesma linha representam a diferença estatista presente nos resultados.

A causa da diferença estatística no valor do oxigênio dissolvido (mg.L<sup>-1</sup>) nos tratamentos  $D_4$  e  $D_6$  em comparação com o tratamento  $D_2$ , pode ter ocorrido devido uma falha na distribuição do sistema de aeração entre os tanques, já que a aeração é parte fundamental para tornar os níveis de oxigênio adequadas nos tanques de cultivos para os animais, sobrevivência de microrganismos e ciclagem dos nutrientes. Este fator influencia da presença de microalgas e bactérias, pois torna os seus níveis mais estáveis dentro dos sistemas de criação. Apesar desta diferença, todos os tratamentos apesentaram valores acima de 8,6 mg.L<sup>-1</sup>, quantidades adequadas para o cultivo do *L. vannamei*, que Segundo Avnimelech (2009), deve-se manter em valores iguais ou superiores a 4,0 mg.L<sup>-1</sup>.

As diferença de pH entre os tratamentos  $D_4$  e  $D_6$  em comparação com o tratamento  $D_2$ , pode ter sido causada pela respiração dos organismos presentes nos tanques. Já que o tratamento  $D_2$  possuía a menor densidade de estocagem e propositalmente a menor quantidade de animais, a quantidade de gás carbônico ( $CO_2$ ) liberado pela respiração dos animais era menor, assim o  $CO_2$  que quando presente no sistema reage com a água e causa a diminuição do pH (MERCANTE et al, 2007), era menor no  $D_2$  que nos demais tratamentos, o pH se manteve em níveis mais elevados. Apesar disto os valores de pH mantiveram-se bem próximos do valore ideal para o L. vannamei, que esta na faixa de 7,0 a 8,0 (WYK, 1999).

O valor da temperatura manteve-se abaixo da temperatura ideal para o desenvolvimento do *L. vannamei* (<23°C), já a faixa ideal de temperatura para o cultivo desta espécie esta situada entre 26 a 33 °C, sendo que temperaturas superiores a 35 °C e inferiores a 25 °C podem causar danos ao desempenho zootécnico desta espécie, pois ira

afetar o consumo de alimento deixando-os suscetíveis a doenças e causando estresse ao animal (NUNES, 2002). Além de ser um fator que influencia diretamente no desempenho dos camarões, a temperatura da água também contribui para o desenvolvimento da microbiota na água de cultivo, pois temperaturas mais altas aceleram o desenvolvimento da biota aquática e na composição dos mesmos (SILVA, 2009).

Esta baixa temperatura presente no cultivo, deve-se ao inverno, estação do ano que ocorreu durante o experimento, esta estação é caracterizada por ser a que possui as menores temperaturas do ano. Outro fator que colaborou com essas temperaturas da água de cultivo, foi o local onde os tanques de cultivo foram mantidos, dentro do laboratório, fato que impedia o recebimento de luz solar, que possibilita recebimento de calor.

O camarão *L. vannamei* é considerada uma espécie eurialina, isto é, possui a capacidade de suportar uma larga variação de salinidade (0,5 – 40 g.L<sup>-1</sup>) (FONSECA et al; 2009). A salinidade durante o experimento manteve-se entre 2,0 e 4,0, estando assim em condições adequadas para o cultivo desta espécie.

#### **5.2. Desempenho de crescimento**

Os valores de desempenho do crescimento dos camarões no berçário com tecnologia de biofloco estão apresentados na tabela 2.

**Tabela 2.** Valores médios ± desvio padrão do desempenho zootécnico do camarão na fase de berçário submetido à diferentes densidades de estocagem.

| Variáveis                       | Tratamentos           |                        |                      |  |
|---------------------------------|-----------------------|------------------------|----------------------|--|
| variaveis                       | $D_2$                 | $\mathrm{D}_4$         | $D_6$                |  |
| Peso final (mg)                 | $53,2^{a} \pm 10,8$   | 57,5° ± 15,3           | $47,6^{a} \pm 7,4$   |  |
| Sobrevivência (%)               | $72,22^{a} \pm 12,61$ | $64,22^{ab} \pm 10,33$ | $49,72^{b} \pm 9,22$ |  |
| Produção (PLs.L <sup>-1</sup> ) | $1,44^{b} \pm 0,25$   | $2,47^{ab} \pm 0,57$   | $2,98^{a} \pm 0,55$  |  |

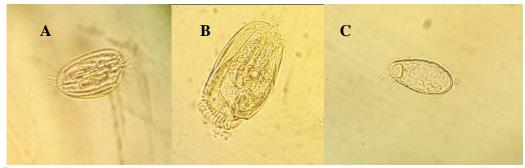
Letras diferentes na mesma linha representam a diferença estatista no teste "t" presente nos resultados

Apesar do peso final não ter apresentado diferença estatista, a sobrevivência apresentou-se diferente para os tratamentos, tendo o  $D_2$  com a maior sobrevivência em comparação com o  $D_6$  e ambos iguais ao  $D_4$ , o motivo disto pode ter sido o aumento da densidade de estocagem, que como observado por Fonseca et al. (2009) o aumento da

densidade de estocagem, causa a diminuição da área disponível para os animais, aumento do estresse e da dependência pelo alimento artificial, já que nas altas densidades o alimenta natural pode se esgotar mais rapidamente, e o alimento artificial não conter os nutrientes necessários para um bom desenvolvimento.

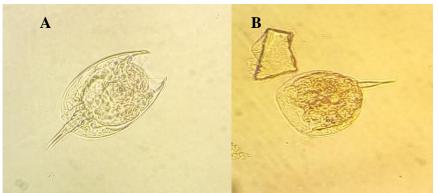
A produção também se apresentou diferente entre o  $D_2$  e  $D_6$ , que foi o que obteve o maior valor, pois era o tratamento que possuía a maior densidade de estocagem e assim a maior quantidade de animais no tanque de cultivo, apesar da sobrevivência para este tratamento ter sido inferior ao  $D_2$ .

# 5.3 Comunidade zooplanctônica


A comunidade zooplanctônica apresentou 23 gêneros, distribuída entre Rotífera, Protozoa, Nematoda, Platelmintos e Cladocera (Tabela 3) representados na Figura 7.

**Tabela 3.** Abundancia relativa do zooplâncton (%), no berçário do *L. vannamei* em diferentes densidades de estocagem com tecnologia de biofloco.

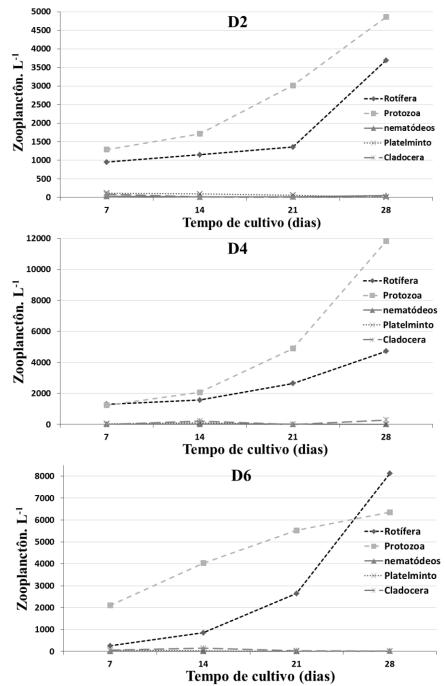
| <u></u>         | Tratamentos |        |        |  |
|-----------------|-------------|--------|--------|--|
| _               | $D_2$       | $D_4$  | $D_6$  |  |
| Rotíferos       | 32,94       | 27,64  | 33,06  |  |
| Lecane spp.     | 23,10       | 15,03  | 4,95   |  |
| Lepadella spp.  | 9,15        | 11,54  | 26,62  |  |
| Euchlanis sp.   | 0,27        | 0,14   | 0,11   |  |
| Colurella sp.   | 0,19        | 0,54   | 0,45   |  |
| Encentrum spp.  | 0,03        | 0,06   | 0,01   |  |
| Brachionus sp.  | 0,00        | 0,01   | 0,00   |  |
| Keratella sp.   | 0,00        | 0,00   | 0,00   |  |
| N.I.            | 0,20        | 0,34   | 0,93   |  |
| Protozoa        | 66,79       | 72,15  | 66,83  |  |
| Aspidisca sp.   | 27,97       | 37,16  | 30,80  |  |
| Trinema spp.    | 13,72       | 20,58  | 10,46  |  |
| Euplotes sp.    | 12,53       | 9,99   | 16,76  |  |
| Vorticella spp. | 5,95        | 2,38   | 6,80   |  |
| Quadrulella sp. | 4,49        | 1,42   | 1,29   |  |
| Cothurnia sp.   | 1,18        | 0,11   | 0,28   |  |
| Paramecium spp. | 0,62        | 0,25   | 0,15   |  |
| Dindinium spp.  | 0,04        | 0,12   | 0,16   |  |
| Centropyxis sp  | 0,12        | 0,08   | 0,00   |  |
| Stylonychia sp  | 0,04        | 0,01   | 0,00   |  |
| N.I             | 0,10        | 0,06   | 0,13   |  |
| Nematódeos      | 0,06        | 0,01   | 0,01   |  |
| Nematódeos      | 0,06        | 0,01   | 0,01   |  |
| Platelminto     | 0,15        | 0,05   | 0,03   |  |
| Platelminto     | 0,15        | 0,05   | 0,03   |  |
| Cladocera       | 0,06        | 0,15   | 0,08   |  |
| Cladocera       | 0,06        | 0,15   | 0,08   |  |
| Total           | 100,00      | 100,00 | 100,00 |  |


D<sub>2</sub> – densidade de 2 PLs.L<sup>-1</sup>; D<sub>4</sub> – densidade de 4 PLs.L<sup>-1</sup>; D<sub>6</sub> – 6 PLs.L<sup>-1</sup>; N.I. – Organismos não identificados.

O grupo Protozoa foi o que mais apresentou diversificação, independente do tratamento e durante todo o período do experimento foi também o que obteve a maior abundancia, sendo o grupo dominante e estando muito acima dos demais grupos (Figura 8). Isto esta relacionado com à adaptação que esses organismos possuem para níveis mais elevados de nutrientes e sólidos, pois essas águas enriquecidas contem grandes populações de bactérias das quais os protozoários se alimentam (CURDS, 1992) Em termos de gênero percebe-se que a *Aspidisca* (Figura 5. a), *Euplotes* (Figura 5. b) e *Trinema* (Figura 5. c) foram os principais responsáveis por esta dominância em todos os tratamentos.



**Figura 5**. Gêneros dominantes do zooplâncton identificados no berçário de *L. vannamei* em diferentes densidades de estocagem. A) *Aspidisca sp.*; B) *Euplotes sp.* e C) *Trinema spp*.


O grupo dos rotíferos foi o segundo mais diversificado e abundante. Em relação a este grupo, os gêneros responsáveis pela sua dominância durante o experimento, foram *Lepadella spp*. (Figura 6. a) e *Lecane spp*. (Figura 6. b). O gênero *Lepadella* foi muito mais representante que o gênero *Lecane* no tratamento D<sub>6</sub>, já no tratamento D<sub>2</sub> ocorreu o contrario disto, tendo o gênero *Lecane* se sobressaindo sobre o gênero *Lepadella*, este fato pode ser explicado pela competição que ocorre entre estes indivíduos, já que altas taxas destes organismos estão relacionadas segundo Loureiro et al (2012) com a crescente eutrofização da água. Já que os rotíferos se alimentam da matéria orgânica presente nos tanques de cultivo (CASÉ et al; 2008).



**Figura 6**. Principais gêneros de rotíferos identificados no berçário do camarão *L. vannamei* com diferentes densidades de estocagem. A) *Lepadella spp.* e B) *Lecane spp.* 

Assim como Castro-Mejía et al. (2017) com cultivo da tilapia *Oreochromis niloticus*, em tecnologia de biofloco, também obteve a predominância dos protozoários durante o cultivo, mas somente o gênero *Lecane*, de rotífera.

A intensificação dos cultivos de *L. vannamei* requer o estabelecimento de uma comunidade planctônica bem desenvolvida, já que esta é utilizada como complemento alimentar, fornecendo-lhes importantes compostos nutricionais como ácidos graxos, que são essenciais à sobrevivência e crescimento dos camarões (MAIA et al., 2003). O valor nutricional da biomassa seca dos rotíferos depende da sua base alimentar, mas contém cerca de 25-63% de proteína e de 6-36% de lipídeos (Demir & Dicken, 2011; Jeeja et al, 2011). E segundo Watanabe e Kiron (1994) essas proteínas são altamente digestivas, estando entre 84% a 94% de digestibilidade.



**Figura 7**. Variação das densidades populacionais do zooplâncton no berçário de camarão com biofloco, com diferentes densidades de estocagem.  $D_2$  – densidade de 2 PLs.L<sup>-1</sup>;  $D_4$  – densidade de 4 PLs.L<sup>-1</sup>;  $D_6$  – 6 PLs.L<sup>-1</sup>

Todos os tratamentos apresentaram um crescimento acelerado dos grupos de rotífera e Protozoa, apenas o experimento  $D_6$  demonstrou uma diminuição na taxa de crescimento dos Protozoa, podendo estar relacionada com uma estabilização deste grupo.

Os rotíferos e protozoários são utilizados como bioindicadores das condições tróficas de águas, pois geralmente em ambientes mais perturbados, que possuem

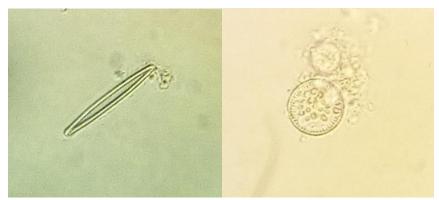
maiores concentrações de nutrientes, também há maiores abundâncias de uma ou poucas espécies e estas, na maioria, são de pequeno porte, como os Rotíferos e Protozoa (MATSUMURA-TUNDISI et al.,1990). Para os rotíferos a temperatura é diretamente proporcional ao ciclo de vida, quanto maior a temperatura, o ciclo dos rotíferos será mais rápido (MOREIRA et al., 2001).

Os protozoários, bem como os rotíferos, possuem grande importância na alimentação dos camarões, especialmente nos estágios iniciais de sua vida, devido ao tamanho reduzido desses organismos, bem como o teor de proteína (FURUYA, 2001). Loureira (2012) confirmou essas hipóteses por análises de conteúdo de intestino de camarão, onde protozoários e rotíferos foram os principais organismos encontrados.

# 5.4 Comunidade fitoplanctônica

A comunidade fitoplantônica nos viveiros de berçário esteve composta por 16 gêneros, distribuídos nas classes *Chlorophyceae*, *Bacillariophyta*, *Cyanophyceae* e *Dinophyceae* (Figura 8) Tabela 4.

**Tabela 4**. Abundancia relativa do fitoplâncton (%) no berçário de camarão *L. vannamei* cultivado em diferentes densidades de estocagem.


|                    |        | Tratamentos    |        |
|--------------------|--------|----------------|--------|
| _                  | $D_2$  | $\mathrm{D}_4$ | $D_6$  |
| Chlorophyceae      | 16,50  | 37,46          | 41,20  |
| Chlorococcum spp.  | 9,25   | 23,08          | 30,41  |
| Asterococcus sp.   | 4,25   | 13,19          | 9,54   |
| Stigeoclonium sp.  | 2,15   | 0,85           | 0,95   |
| Tetraspora sp.     | 0,85   | 0,34           | 0,26   |
| N.I.               | 0,00   | 0,00           | 0,04   |
| Bacillariophyta    | 47,68  | 52,54          | 41,42  |
| Navicula spp.      | 39,19  | 47,48          | 36,04  |
| Cyclotella sp.     | 8,31   | 4,97           | 5,26   |
| Fragilariforma sp. | 0,03   | 0,00           | 0,00   |
| Aulacoseira sp.    | 0,05   | 0,04           | 0,05   |
| Fragilaria sp.     | 0,05   | 0,00           | 0,00   |
| Valva spp.         | 0,05   | 0,04           | 0,04   |
| N.I.               | 0,00   | 0,00           | 0,04   |
| Cyanophyceae       | 35,09  | 8,19           | 16,19  |
| Planktolyngbya sp. | 34,46  | 5,86           | 14,66  |
| Aphanothece sp.    | 0,12   | 0,00           | 0,00   |
| N.I                | 0,51   | 2,33           | 1,53   |
| Dinophyceae        | 0,74   | 1,81           | 1,19   |
| Ceratium sp.       | 0,74   | 1,81           | 1,19   |
| Total              | 100,00 | 100,00         | 100,00 |

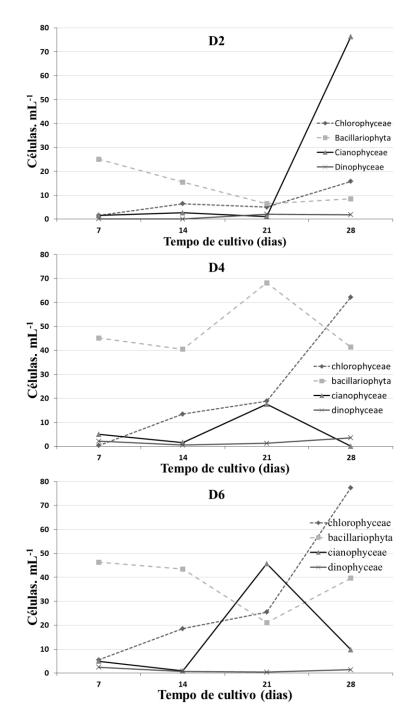
D<sub>2</sub> – densidade de 2 PLs.L<sup>-1</sup>; D<sub>4</sub> – densidade de 4 PLs.L<sup>-1</sup>; D<sub>6</sub> – 6 PLs.L<sup>-1</sup>; N.I. – Organismos não identificados.

Silva et al (2017) realizou um experimento com tilápia no mesmo local em que este experimento ocorreu, e observou que a comunidade fitoplanctônica foi representada por 17 gêneros tendo como mais abundantes as classes *Cyanophyceae*, *Chlorophyceae* e *Bacillariophyceae*, respectivamente. Apesar de apresentar as mesmas classes mais

abundantes, este experimento possuiu a predominância de *Cyanophyceae*, diferente deste experimento que possui a maior abundancia de *Bacillariophyta*.

Diferenciando de Brito et al. (2014) que observou a predominância de *Cyanophyceae* de 76-92%, seguida por *Chlorophyta* e *Bacillariophyta* no cultivo de camarão em água salgada, a classe mais dominante durante o cultivo, foi a *Bacillariophyta*, apresentando a maior abundancia relativa dentre os tratamentos durante o experimento, que além disso foi o grupo mais diversificado. Os gêneros *Navicula* (Figura 9.a) e *Cyclotella* (Figura 10.b) foram os principais responsáveis pela dominância da classe *Bacillariophyta* (>41%).




**Figura 9**. Principais gêneros de *Bacillariophyta* identificados no berçário do camarão *L. vannamei* com diferentes densidades de estocagem. A) *Navicula spp.* e B) *Cyclotella sp.* 

A classe *Chlorophyceae* foi o segundo grupo mais diversificado e abundante no cultivo, somente no tratamento D<sub>2</sub> que o grupo das *Cyanophyceae* se sobressaiu sobre as *Chlorophyceae*. Os gêneros responsáveis pela maior abundanciam da *Chlorophyceae* (>16%) nos tratamentos D<sub>4</sub> e D<sub>6</sub>, foram o *Asterococcus e Chlorococcum*, já para a *Cyanophyceae* (>35%) o gênero responsável pela sua predominância no tratamento D<sub>2</sub> foi a *Planktolyngbya*.

Assim como Castro-Mejía et al (2017) que obteve uma maior abundancia de *Chlorophyceae* do que *Cyanophyceae*, isso devido a exposição constante a aeração do sistema, já que nutrientes não são uma limitação para o fitoplâncton no sistema de biofloco, mas o fitoplâncton é exposto regularmente a luz, que variam constantemente devido à mistura contínua do meio pela aeração, favorecendo o crescimento rápido de diatomáceas (*Bacillariophyta*) e *Chlorophyceae* sobre o crescimento das *Cyanophyceae* (REYNOLDS, 1984; GREEN et al., 2014).

A baixa presença de *Cyanophyceae* é uma condição positiva para o cultivo, pois grupos de *Cyanophyceae* (*Shizothrix calcicola, Microcystis, Oscillatoria* e *Anabaena*) podem afetar negativamente a qualidade da água através da produção de compostos tóxicos para alguns animais aquáticos (YUSOFF et al. 2010). Segundo Zhou et al. (2009), estas toxinas podem afetar o crescimento de camarões peneídeo. Mesmo em sistemas intensivos como o biofloco, *Bacillariophyta* (diatomáceas) podem contribuir para a nutrição do camarão, pois possuem ácidos graxos insaturados (JU et al. 2008).

O camarão prefere diatomáceas em relação a outros grupos de microalgas (JÚ et al., 2009). Mesmo em sistemas intensivos de cultivo, a comunidade microbiana pode desempenhar um papel importante no ciclo de nutrientes (SÁNCHEZ et al., 2012) fornecendo compostos nutricionais importantes, como aminoácidos essenciais e ácidos graxos altamente insaturados que são essenciais para a sobrevivência e crescimento do camarão (KHATOO et al., 2009).



**Figura 8**. Variação das densidades populacionais do fitoplânton no berçário de camarão com biofloco, com diferentes densidades de estocagem.  $D_2$  – densidade de 2 PLs.L<sup>-1</sup>;  $D_4$  – densidade de 4 PLs.L<sup>-1</sup>;  $D_6$  – 6 PLs.L<sup>-1</sup>

Diferenciando de Silva el al (2017) que observou a alta concentração de fitoplâcnton no seu cultivo em área externa, com luz natural, este experimento apresentou baixa presença destes organismos, fato decorrido pela limitação da quantidade de luz que chegava ate os tanques de cultivo, já que estes estavam localizados dentro do laboratório e assim não recebiam luz natural diretamente.

# 6. CONCLUSÃO

A água dos tanques de berçário de camarão marinho *Litopenaeus vannamei*, com tecnologia de biofloco, foram dominados pelos zooplânctons do grupo Protozoa, dos gêneros *Aspidisca, Euplotes* e *Trinema*, seguido pelos Rotíferos dos gêneros *Lepadella* e *Lecane*. O fitoplâncton, presente no cultivo foi representado principalmente pelas classes *Bacillariophyta* com os gêneros *Navicula* e *Cyclotella*, e a classe *Chlorophyceae* compondo pelos principais gêneros *Asterococcus* e *Chlorococcum*, com a exceção do tratamento D<sub>2</sub>, onde a classe das *Cyanophyceae* a superou com a predominância do gênero *Planktolyngbya*.

As densidades adotadas no experimento não causaram diferenças quanto à qualidade de água no cultivo, exceto nos sólidos sedimentares onde o tratamento  $D_6$  apresentou o maior valor e no pH que o  $D_2$  apresentou o valor mais alto do cultivo.

Entre as densidades de estocagem utilizadas no experimento, a densidade de 4  $PLs.L^{-1}$ , foi o que apresentou a maior densidade de zooplâncton, porem foi o  $D_6$  que possuiu a maior quantidade de fitoplâncton durante o experimento.

# 7. REFERÊNCIAS BIBLIOGRÁFICAS

ALLAN, G. L.; MORIARTY, D. J. W.; MAGUIRE, G. B. Effects of pond preparation and feeding rate on production of *Peanaeus monodon* Fabricius, water quality, bacteria and benthos in model farming. **Aquaculture**, v. 130, n.4, p. 329-349, 1995.

ANDERSON, R. K., PARKER, P. L., LAWRENCE, A. L. A 13C/ 12C tracer study of the utilization of presented feed by commercially important shrimp *Penaeus vannamei* in a pond growout system. **World Aquaculture Society**, v. 18, p 148-155, 1987.

ANDREATTA, E. R.; BELTRAME, E. **Cultivo de camarões marinhos**. In: POLI, C. R. et al. (Org.). Aquicultura experiências brasileiras. Florianópolis: Multitarefa, p. 199-220, 2004.

AVNIMELECH, Y. **Biofloc Technology, a practical guide book**. The World Aquaculture Society, Baton Rouge, US, 182p, 2009.

AVNIMELECH, Y. Bio-filters: The need for an new comprehensive approach. **Aquacultural Engineering**, v. 34, p. 172-178, 2006.

BARBIERI, R. C. J.; OSTRENSKY, A. N. **Camarões marinhos** – engorda. Viçosa: Aprenda Fácil, p. 325, 2002.

BOYD, C. E. Potencial of sodium nitrate to improve environmental conditions in aquaculture ponds. **Journal of the World Aquaculture Society**, v. 26, p. 38-40. 1995.

BOYD, C. E.; QUEIROZ, J. F. Nitrogen, phosphorus loads vary by system. **Global Aquaculture Advocate**, December, n. 1, p. 84-86, 2001.

BOYD, C.E. Water quality management for pond fish culture. Amsterdam: Elsevier, p. 318, 1982.

BRITO, L. O.; ARANA, L. A. V.; SOARES, R. B.; SEVERI, W.; MIRANDA, R. H.; SILVA, S. M. B. C.; COIMBRA, M. R. M.; GA'LVEZ, A. O. Water quality, phytoplankton composition and growth of *Litopenaeus vannamei* (Boone) in an integrated biofloc system with *Gracilaria birdiae* (Greville) and *Gracilaria domingensis* (Ku"tzing). **Springer International Publishing Switzerland**, p. 1653-1654, 2014.

BRUNE, D. E.; SCHWARTZ, G.; EVERSOLE, A. G.; COLLIER, J. A.; SCHWEDLER, T.E. Intensification of pond aquaculture and high rate photosynthetic systems **Aquacultural Engineering**, v.28, p. 65-86, 2003.

BURFORD, M. A.; THOMPSON, P. J.; MCINTOSH, R. P.; BAUMAN, R. H.; PEARSON, D. C. The contribution of flocculated material to shrimp (*Litopenaeus vannamei*) nutrition in a high-intensity zero-exchange system. **Aquacult**, v. 232, p. 525-537, 2004.

BURFORD, M. A.; THOMPSON, P. J.; McINTOSH, R. P.; BAUMAN, R. H.; PEARSON, D. C. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. **Aquaculture**, v. 219, p. 393-411, 2003.

CAMPOS, S. S.; SILVA, U. L.; LÚCIO, M. Z. T.; CORREIA, E. S. Natural food valuation and water quality in zero water exchange culture of *Litopenaeus vannamei* fertilized with wheat bran. **Aquaculture internacional**. p. 113-124, 2009.

CASÈ, M.; LEÇA, E. E.; LEITÃO, S. N.; SANT`ANNA, E. E.; SCHWAMBORN, R.; JUNIOR, A. T. M. Plankton community as an indicator of water quality in tropical shrimp culture ponds. **Marine Pollution Bulletin**, p.1343-1342, 2018.

CORREIA, E. S. Influência da alimentação natural no cultivo semi-intensivo do camarão de água doce *Macrobrachium rosenbergii* (de Man, 1879). 1998. 136f. Tese (Doutorado em Ecologia e Recursos Naturais) - Curso de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos.

CRAB, R.; AVNIMELECH, Y.; DEFOIRDT, T.; BOSSIER P.; VERSTRAETE, W. Nitrogen removal techniques inaquaculture for a sustainable production. **Aquaculture**, p. 1-14,2007.

CASTRO-MEJÍA, G.; ANDRADE, R. L.; MONROY-DOSTA, M. C.; MAYA-GUTIÉRREZ, S.; CASTRO-MEJÍA, J.; JIMÉNEZ-PACHECO F. Presence and abundance of phytoplankton and zooplankton in a biofloc production system using two carbon sources: 1) Molasses and 2) Molasses + rice powder, culturing *Oreochromis niloticus*. Digital Journal of **El Hombre y su Ambiente Department**. v. 1, 2017.

D'ABRAMO, L. R.; SHEEN, S. S. Requerimientos nutriocionales, formulación de dietas y práticas alimentícias para el cultivo intensivo del langostino de agua dulce *Macrobrachiium rosenbergii*. In: MENDOZA, R.; CRUZ-SOARES, L.E.; RICQUE, D. (Eds). **Memorias del Segundo Simposium Internacional de Nutricion Acuicola.** Monterrey, 1994. Monterrey: Universidad Autonoma de Nuevo León, p. 81-101. 1996.

EBELING J. M.; TIMMONS M. B.; BISOGNI J. J.; Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonianitrogen in aquaculture systems. **Aquaculture**. p. 346–358, 2006.

EMERENCIANO, M. G. C.; WASIELESKY, W. J; SOARES, R. B.; BALLESTER, E. C.; IZEPPI, E. M.; CAVALLI, R. O. Crescimento e sobrevivência do camarão rosa (*Farfantepenaeus paulensis*) na fase de berçário em meio heterotrófico. Acta **Scientiarum. Biological Sciences**, v. 29, n. 1, p. 1-7, 2007.

ERLER, D. V.; SONGSANGJINDA, P.; KEAWTAWEE, T.; CHAIYAKAM, K. Preliminary investigation into the effect of carbon addition on growth, water quality and nutrient dynamics in zero-exchange shrimp (*Penaeus monodon*) culture systems. **Asian Fisheries Science**. v.18, p. 195-204, 2005.

FAO/NACA/UNEP/WB/WWF. Internacional Principles for Responsible Shrimp Farming. Network of Aquaculture Centres in Ásia-Pacific (NACA).Bangkok: FAO, 2006. 20p.

FONSECA, S. B; MENDES, P. P; ALBERTIM, C. J. L; BITTENCOURT, C. F; SILVA, J. H. V. Cultivo do camarão marinho em água doce em diferentes densidades de estocagem. **Pesquisa Agropecuária Brasileira**, v.44, p. 1352-1358, 2009.

FURUYA, W.M.; MOREIRA, H.L.M.; L VARGAS, R.P.; ZIMMERMANN, R. S. **Fundamentos da Moderna Aquicultura**. Ed. Ulbra, Canoas, p. 59–68,2001.

GÓMEZ-JIMÉNEZ, S.; GONZÁLEZ-FÉLIX, M, L.; PEREZ-VELAZQUEZ, M.; TRUJILLO-VILLALBA, D. A.; EZQUERRA-BRAUER, I. R.; BARRAZA-GUARDANO, R. Effect of dietary protein level on growth, survival and ammonia efflux rate of *Litopenaeus vannamei* (Boone) raised in a zero water exchange culture system. **Aquaculture Research**, V. 36, p. 834-840, 2005.

GREEN, B. W, SCHRADER K. K; PERSCHBACHER, P. P. Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. **Aquaculture Research**, v. 45: p. 1442-1458, 2014.

JÚ, Z. Y.; FORSTER, I. P; DOMINY, W. G. Effects of supplementing two species of marine algae or their fractions to a formulated diet on growth, survival and composition of shrimp (*Litopenaeus vannamei*). **Aquaculture**, p. 237-243, 2009.

JÚ, Z.Y.; FORSTER, L.; CONQUEST, L.; DOMINY, W.; KUO, W. C.; HORGEN, F. D. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. **Aquaculture**.p. 118-133, 2008.

KHATOON, H.; BANERJEE, S.; YUSOFF, F.M.; SHARIFF, M. Evaluation of indigenous marine periphytic *Amphora*, *Navicula* and *Cymbella* grown on substrate as feed supplement in Penaeus monodon postlarvae hatchery systems. **Aquaculture Nutrition**, p.186–193, 2009.

KRUMMENAUER, D.; POERSCH, L.H.; FÓES, G.; GAONA, C.A.; LARA, G.R. & JUNIOR, W.W. Sistema de bioflocos aumenta produtividade no cultivo de camarões. In: Feira Internacional de Pesca e Aquicultura, 2012.

KUBITZA, F. **Qualidade da água no cultivo de peixes e camarões**. Jundiaí: F. Kubitza, 2003.

LOUREIRO, C. K.; WILSON WASIELESKY, W. J.; ABREU, P. C. The use of protozoan, rotifers and nematodes as live food for shrimp raised in bft system. Atlântica, Rio Grande, 2012.

MAIA, E. P.; LEAL, A.; CORREIA, E. S.; PEREIRA, A. L.; OLIVERA, A. Caracterização planctônica de cultivo super-intensivo de *Litopenaeus vannamei*. **Revista da ABCC**, v.5, n.2, p.60-62. 2003.

MATSUMURA-TUNDISI, T.; LEITÃO, S. N.; AGUENA, L. S.; MIYAHARA, J. Eutrofização da Represa de Barra Bonita: estrutura e organização da comunidade de Rotifera. **Revista Brasileira de Biologia**. v. 50, p. 923-935, 1990.

McNEIL, R. Zero exchange, aerobic, heterotrophic systems: key considerations. **Global Aquaculture Advocate**, June, p. 76, 2000.

MERCANTE, C. T. J.; MARTINS, Y. K.; CARMO, C. F.; OSTI, J. S.; PINTO, C.S. R. M.; TUCCI, A. Qualidade da água em viveiro de tilápia do Nilo (*Oreochromis niloticus*) caracterização diurna de variáveis físicas, químicas e biológicas, São Paulo, Brasil. **Bioikos**, p. 79-88, jul./dez, 2007.

MICHAUD, L.; BLANCHETON, J.P.; BRUNI, V.; PIEDRAHITA, R. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. **Aquacultural Engineering**, v.34, p. 224–233, 2006.

MOSS, S. M. Dietery **Inportance of microbes and detritus in penaeid shrimp aquaculture**. In: LEE, C. S.; O'BRYEN, P. (Eds.). Microbial Aprproaches to Aquatic Nutrition within Environmentally Sound Aquaculture Porduction Systems. World Aquaculture Socyety, Baton Rouge, USA, p. 1-18. 2002.

NEWELL, G.E.; NEWELL, R.C. **Marine Plankton**: a practical guide. London: Hutchinson. EDUCAT, p. 221, 1963.

NUNES, A. J. P. Alimentação para camarões marinhos – Parte II. **Panorama da Aqüicultura**, Rio de Janeiro, v. 11, n. 63, p 23-33.2001.

NUNES, A. J. P. Camarões marinhos: engenharia e logística operacional de berçários intensivos. **Panorama da Aqüicultura**, Rio de Janeiro. v. 12, n. 69, p. 25-37, 2002.

NUNES, A. J. P. Guia Purina – **Fundamentos da Engorda de Camarões Marinhos**. 2 ed. p. 42, 2004.

NUNES, A. J. P.; GESTEIRA, T. C. V.; GODDARD, S. Food consumption and assimilation by the Southern brown shrimp *Penaeus subtilis* under semi-intensive culture in NE Brazil. **Aquaculture**, v. 149, p 121-136. 1997.

REYNOLDS C.S. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge, England, 1984.

ROCHA, I. P. Panorama da Carciniculura brasileira em 2007: desempenho, desafios e oportunidades. **Panorama da Aqüicultura**, v. 17, n 104, p. 26-31, 2007.

ROCHA, I. P. Setor Carcinícola, Aquícola e Pesqueiro: Potencialidades, Desafios e Oportunidades para uma Efetiva Contribuição com o Fortalecimento da Sócia Economia Pesqueira do Brasil. **ABCC**, Nov. 2018.

ROCHA, M. M. R. M.; NUNES, M. L.; FIQUEREDO, M. I. Cultivo de Pos-Larvas de *L. vannamei*, em Berçários Intensivos. In: Simpósio Brasileiro de aqüicultura; Congresso Sul Americano de Aqüicultura; Simpósio Brasileiro Sobre Cultivo de Camarão. Recife, 1998. Anais..., Associação Brasileira de Aqüicultura - ABRAq, p. 289 – 299, 1998.

SAMOCHA, T.; CORDOVA, J.; BLANCHER, T.; WIND, A. Raceway nursery production incresases shrimp survival and yields in Ecuador. **Global Aquaculture Advocate**, v. 3, p. 66-68, 2000.

SCHNEIDER, O.; SERETI, V.; EDING, E. H.; VERRETH, J. A. J. Molasses as C source for heterotrophic bacteria production on solid fish waste. **Aquaculture**, v. 261, p. 1239-1248, 2006.

SEIFFERT, W., G.; FOES, K.; ANDREATTA, E.; BELTRAME, E. Cultivo de juvenis de *Litopenaeus vannamei* em viveiros berçários traz flexibilidade ao produtor. Universidade Federal de Santa Catarina, **Panorama da Aqüicultura**, Rio de Janeiro, 2003.

SHIAU, S. Y.; BAI, S. Micronutrients in shrimp diets. In: BROWDY, C. L.; JORY, D. E. (Eds.). The rising tide, Proceedings of session on sustainable shrimp farming, World Aquaculture Society, p.126-132, 2009.

SILVA, A. L. N.; SOUZA, R. A. L. Glossário de aqüicultura. Recife: UFRPE, Imprensa Universitária, p. 97, 1998.

SILVA, U. L.; CAMPOS, S. S.; CORREIA, E. S. Efeitos de fertilizantes orgânicos e inorgânicos na abundância macro e meio bentos e na qualidade da água do cultivo do camarão *Litopenaeus vannamei* (Boone, 1931). **Atlântica**, v.31, n.1, p.23-33, 2008.

SILVA, U. L; VIEIRA, L. C; MELLO, M. V. L; FRANÇA, E. J; FALCON, D. R; CORREIA, E. S. Response of phytoplankton to different carbon sources and c:n ratios in tilapia fingerling culture with bioflocs. **Bol. Inst. Pesca**, v. 255, p. 2-4, 2018.

SOARES, R.; PEIXOTO, S.; WASIELESKY, W.; D'INCAO, F. Feeding rhythms and diet of *Farfantepenaeus paulensis* under pen culture in Patos Lagoon estuary. **Journal of Experimental Marine Biology and Ecology**. v.322, p.167-176, 2005.

SQUIO, C. R.; ARAGÃO, G. M. F. Estratégias de cultivo para produção dos plásticos biodegradáveis poli (3-hidroxibutirato) e poli (3-hidroxibutirato-*co*-3-hidroxivalerato) por bactérias. **Química Nova**, v. 27, n. 4, p. 615-622, 2004.

VALLE, B.C.S.; DANTAS, E. M.; SILVA, J. F.X.; BEZERRA, R. S.; CORREIRA, E. S.; PEIXOTO, S. E. M.; SOARES, R. B. Replacement of fishmeal by fish protein hydrolysate and biofloc in the diets of *Litopenaeus vannamei* postlarvae. **Aquaculture Nutrition**. p. 105–112, 2015.

WASIELESKY, W.; EMERENCIANO, M.; BALLESTER, E.; SOARES, R.; CAVALLI, R.; ABREU, P. C. Cultivos em meios com flocos microbianos: um novo caminho a ser percorrido. **Panorama da Aquicultura**, Rio de Janeiro, v. 16, n. 96, p. 14-23, jul/ago, 2006a.

WASIELESKY, W.JR.; ATWOOD, H.; STOKES, A.; BROWDY, C.L. Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp *Litopenaeus vannamei*. **Aquaculture**, v. 258, p.396-403, 2006b.

WATANABE, T.; KIRON, V. Prospects in larval fish dietetics. **Aquaculture**, v. 124, p. 223-251, 1994.

YUSOFF, F. M.; MATIAS-PERALTA, H. B.; SHARIFF M. Phytoplankton population patterns in marine shrimp culture ponds with different sources of water supply. **Aquat Ecosyst Health**, p. 458–464, 2010.

ZHOU, Q.; LI, K.; JUN, X.; BO, L. Role and functions of beneficial microorganisms in sustainable Aquaculture. **Bioresour Technol**. p. 3780–3786, 2009.