

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE QUÍMICA CURSO DE LICENCIATURA PLENA EM QUÍMICA

PEDRO RAMOS DE SOUZA NETO

MÉTODOS DE o-GLICOSILAÇÃO E SUAS APLICAÇÕES NA SÍNTESE DE MOLÉCULAS BIOATIVAS

PEDRO RAMOS DE SOUZA NETO

MÉTODOS DE o-GLICOSILAÇÃO E SUAS APLICAÇÕES NA SÍNTESE DE MOLÉCULAS BIOATIVAS

Monografia apresentada como pré-requisito de conclusão do Curso de Licenciatura Plena em Química, da Universidade Federal Rural de Pernambuco, tendo como orientador o Professor Dr. Ronaldo Nascimento de Oliveira e coorientadora Me. Bruna Martins Guimarães.

Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca Central, Recife-PE, Brasil

S729m Souza Neto, Pedro Ramos de

Métodos de o-glicosilação e suas aplicações na síntese de moléculas bioativas / Pedro Ramos de Souza Neto. – Recife, 2019. 78 f.: il.

Orientador: Ronaldo Nascimento de Oliveira.

Coorientador: Bruna Martins Guimarães.

Trabalho de Conclusão de Curso (Graduação) – Universidade Federal Rural de Pernambuco, Departamento de Química, Recife, BR-PE, 2019.

Inclui referências e apêndice(s).

1. Glicosilação 2. O-glicosídeo 2. Seletividade I. Oliveira, Ronaldo Nascimento de, orient. II. Guimarães, Bruna Martins, coorient. III. Título

CDD 630

PEDRO RAMOS DE SOUZA NETO

MÉTODOS DE *O*-GLICOSILAÇÃO E SUAS APLICAÇÕES NA SÍNTESE DE MOLÉCULAS BIOATIVAS

Monografia apresentada como pré-requisito de conclusão do Curso de Licenciatura Plena em Química, da Universidade Federal Rural de Pernambuco.

APROVADO EM	ſI/
	BANCA EXAMINADORA
	Prof. Dr. Ronaldo Nascimento de Oliveira – UFRPE Orientador
	Me. Bruna Martins Guimarães – UFRPE Coorientadora
	Prof. Dr. João Rufino de Freitas Filho – UFRPE Primeiro Examinador
	Prof. Dr. Jucleiton José Rufino de Freitas - UFRPE Segundo Examinado

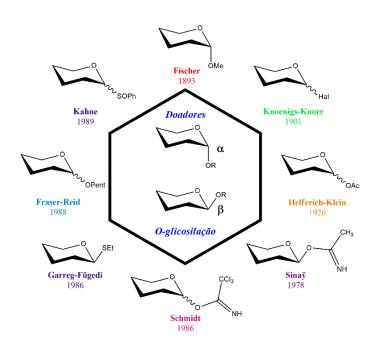
Recife-2019

AGREDECIMENTOS

Inicio agradecendo aos meus pais (Mauricéa Severo de Paiva e José Milton de Souza) por toda a força, suporte, atenção e motivação para o meu desenvolvimento intelectual e profissional, enfatizando que sempre estiveram comigo nos momentos mais difíceis e ultrapassamos barreiras juntos e por isso sou extremamente grato.

Ao meu orientador Ronaldo Nascimento de Oliveira pela confiança, paciência ensinamentos e a oportunidade de ser integrante do grupo de pesquisa do Laboratório de Síntese de Compostos Bioativos (LSCB) na UFRPE e fazer parte de um projeto de pesquisa científico em química, proporcionando a descoberta da minha área profissional.

Demonstro também gratidão a Universidade Federal Rural de Pernambuco pelo espaço cedido, apoios gerais e em especial a Pró-Reitoria de Gestão Estudantil e Inclusão (PROGESTI) pelo apoio financeiro, facilitando minha permanência na academia científica.


Ao PIC-UFRPE e CNPq pelo financiamento do projeto de pesquisa, também ao Departamento de Química pela bolsa de monitoria em Química Analítica, contribuindo efetivamente para minha formação à docência e a minha orientadora Rosangela Maria da Silva Lucena pelas aprendizagens, o carinho, a atenção e por ser uma excelente pessoa.

Aos meus amigos do LSCB pela amizade, pelos momentos únicos e agradáveis que vivemos e também por todos os ensinamentos e suportes fornecidos nesses últimos dois anos: Ingrid (pelo seu carinho e atenção), Yasmin (por sua simpática e amor por todos), Alana (por ter muita paciência, me ajudar, incentivar e me tornar capaz de sintetizar o Glucal), Valentina (pela atenção e ensinamento do K-10 DOPADO), e por ultimo, mas não menos importante minha coorientadora Bruna que sempre esteve comigo, pensando comigo e arranjando maneiras de me ajudar e até hoje continua me ajudando sempre, sendo uma eterna amiga e sempre terá meu carinho.

No mais, a todos que de alguma forma contribuíram para realizar essa conquista que não seria possível sem vocês.

RESUMO

Neste trabalho realizamos uma revisão bibliográfica sobre os principais métodos desenvolvidos nos últimos 9 anos e suas aplicações na síntese de moléculas bioativas. A glicosilação no decorrer deste tempo mostrou os esforços dos cientistas de carboidratos na síntese de *O*-glicosídeos com variados métodos, reagentes e determinadas condições reacionais, empregando doadores glicosídicos, tais como halogenados glicosídeos, *O*-imidato glicosídeos, *S*-glicosídeos, glicais e intermediários epóxidos com excelentes rendimentos e controle da estereosseletividade. Os derivados *O*-glicosídicos apresentaram facilidade sintética de obtenção de complexos α- e/ou β-*O*-glicopiranosídeos, todavia existem certos desafios e limitações em relação ao controle da regio e estereosseletividade.

LISTA DE ESQUEMAS

Esquema 1: Reação de <i>O</i> -glicosilação.	. 17
Esquema 2: Método sintético de Fischer	. 18
Esquema 3: Método sintético de Koenigs-Knorr.	. 19
Esquema 4: Método sintético de Helferich.	. 19
Esquema 6: Método sintético de Schmidt.	. 20
Esquema 7: Método sintético de Garegg-Fügedi.	. 21
Esquema 8: Método sintético de Fraser-Reid.	. 21
Esquema 9: Método sintético de Kahne.	. 22
Esquema 10. Ativação direta do grupo de saída glicosila.	. 25
Esquema 11. Ativação remota do grupo de saída glicosila	. 25
Esquema 12: Síntese a partir de <i>O</i> -acetil-glicosil.	. 39
Esquema 13: Emprego de <i>O</i> -acetil-glicosil	. 39
Esquema 14: Glicosilando 1,2-diol glicosil.	. 39
Esquema 15: Glicosilação β- <i>O</i> -glicopiranosídeo.	. 40
Esquema 16: Glicosilação α- <i>O</i> -glicopiranosídeo.	. 40
Esquema 17: Glicosilação a partir do prop-1-enil glicosil	. 40
Esquema 18: Glicosilação a partir do <i>orto-</i> 2-hex-1-in-1-il-benzoato- <i>O</i> -glicosil	. 41
Esquema 19: Glicosilação a partir do 2-α- <i>O</i> - glicosil-3-metoxipiridina	. 41
Esquema 20: Obtenção de O-glicosídeos.	. 41
Esquema 21: Glicosilação a partir do 2-oxazolina-α- <i>O</i> -glicosil	. 42
Esquema 22: Síntese do β- <i>O</i> -glicopiranosídeo.	. 42
Esquema 23: Glicosilação do borofosfato O-glicosil	. 42
Esquema 24: Síntese a partir do TMS-O-glicosil	. 43
Esquema 25: Glicosilação a partir do β-1- <i>O</i> -Piv-D-galactosil	. 43
Esquema 26: Glicosilação a partir do O-manosil.	. 43
Esquema 28: Glicosilação do <i>orto</i> -alilo glicosil.	. 44
Esquema 29: Glicosilação a partir do brometo manosil	. 44
Esquema 30: Glicosilação com brometo galactosil.	. 45
Esquema 31: Glicosilação a partir do brometo glicosil	. 45
Esquema 32: Glicosilação a partir do brometo glicosil benzilacetilado	. 45
Esquema 33: Glicosilação a partir do brometo 3,4,6-tri- <i>O</i> -acetil glicosil	. 46

LISTA DE ESQUEMAS

Esquema 34: Glicosilação a partir do brometo 3,4,6-tri- <i>O</i> -acetil manosil	46
Esquema 35: Glicosilação a partir do iodeto α-glicosídeo.	46
Esquema 36: Glicosilação a partir do fluoreto glicosídeo	46
Esquema 37: Síntese a partir do acetimidato glicosídeo.	47
Esquema 38: Síntese a partir do α-tricloroacetimidato glicosídeo	47
Esquema 39: Síntese a partir do tricloroacetimidato glicosídeo.	47
Esquema 40: Síntese a partir do 2-naftilmetil- <i>O</i> -imidato glicosídeo	48
Esquema 41: Síntese a partir do trifluorofenilacetimidato glicosídeo	48
Esquema 42: Síntese com <i>N</i> -arilo- <i>O</i> -glicopiranosídeo.	48
Esquema 43: Síntese a partir do 2-azida-2-desoxi-α-galactosídeo	49
Esquema 44: Síntese a partir do α- <i>O</i> -imidato galactosídeo.	49
Esquema 45: Síntese a partir do tetra- <i>O</i> -cloroacetil glicosídeo.	49
Esquema 46: Síntese a partir do α- <i>O</i> -imidato glicopiranosídeo	49
Esquema 47: Síntese a partir do <i>O</i> -imidato glicosil.	50
Esquema 48: Síntese de <i>O</i> -glicopiranosídeos.	50
Esquema 49: Síntese de α- <i>O</i> -glicopiranosídeos.	50
Esquema 50: Síntese de β- <i>O</i> -glicopiranosídeos.	51
Esquema 51: Síntese a partir de α-tricloroimidatos glicosídeos.	51
Esquema 53: Síntese a partir do α-tricloroacetimidato galactosídeo	52
Esquema 54: Síntese de <i>O</i> -glicopiranosídeos	52
Esquema 55: Síntese a partir do α-imidato galactosídeo.	52
Esquema 56: Síntese a partir do S-glicosil.	53
Esquema 57: Síntese a partir de tioglicosídeos.	53
Esquema 59: Síntese a partir do tiofenil glicosil.	54
Esquema 60: Síntese de α- <i>O</i> -glicosídeos.	54
Esquema 61: Síntese a partir do S-glicosídeo.	54
Esquema 62: Síntese de β-galactosídeos.	55
Esquema 63: Síntese a partir dos β-tioglicosídeos.	55
Esquema 64: Síntese a partir de β-tioglicosídeo.	56
Esquema 65: Glicosilação a partir do β-tioglicosídeo	56
Esquema 66: Glicosilação a partir de derivados tioglicosídeos	57

LISTA DE ESQUEMAS

Esquema 67: Glicosilação a partir do tioglicosídeo	57
Esquema 69: Glicosilação a partir de derivados tioglicosil	58
Esquema 70: Glicosilação a partir do tioglicosídeo.	58
Esquema 71: Glicosilação com receptor terpenóico.	58
Esquema 72: Glicosilação com <i>p</i> -tioglicosil	59
Esquema 73: Glicosilação com β-tioglicosil	59
Esquema 74: Glicosilação do 2,3-insaturado- <i>O</i> -but-2-enil glicosídeo	59
Esquema 75: Glicosilação com D-glucal.	60
Esquema 76: Síntese com 2-desoxi-α- <i>O</i> -glicosídeo.	60
Esquema 77: Síntese de <i>O</i> -glicosídeos.	61
Esquema 78: Síntese de 2,3-insaturados alcinil-O-glicopiranosídeos	61
Esquema 79: Síntese de α- <i>O</i> -glicosídeos.	61
Esquema 80: Síntese de 2-desoxi- <i>O</i> -glicosídeos.	62

LISTA DE SIGLAS E ABREVIAÇÕES

DMTST – Trifluorometanossulfonato de dimetil-metiltio-sulfônico

LDA – Di-isopropilamida de lítio

NBS – *N*-bromosuccinimida

DCM – Diclorometano

DCC – N,N'-diciclohexilcarbodiimida

DMAP – 4-dimetilaminopiridina

AgOTf – Trifluorometanossulfonato de prata

TMSClO₄ – Perclorato de trimetilsililo

Bi(OTf)₃ – Trifluorometanosulfonato de bismuto

NIS – N-iodosuccinimida

TMSOTf – Trifluorometanossulfonato de trimetilsililo

Tf₂O – Anidrido trifluorometanossulfônico

Fmoc – Fluorenilmetiloxicarbonilo

Ph₂SO – Difenil sulfóxido

TfOH – Ácido trifluormetanossulfônico

(Ph₃P)₂O(OTf)₂ – Trifluorometanossulfonato de anidrido de trifenilfosfónio

TMSI – Iodo trimetilsilano

PPh₃AuNTf₂ – Bis-(trifluorometanossulfonil)imidato trifenilfosfina de ouro (I)

TTBP – 2,4,6-tri-tert-butilpiridina

DIPEA – *N*,*N*-diisopropiletilamina

DBU – 2,3,4,6,7,8,9,10-octa-hidropirimidol-[1,2-a]-azepina

TBAI – Iodeto de tetrabutilamônio

LISTA DE SIGLAS E ABREVIAÇÕES

TBAB – Brometo de tetrabutilamônio

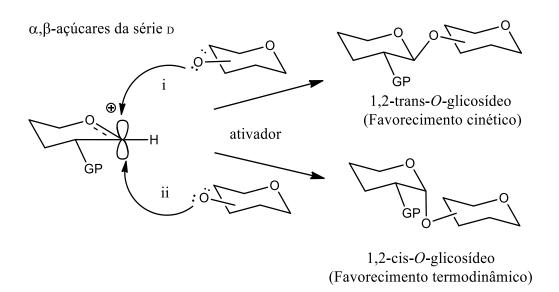
Gal-D-Galactose

Glic – D-Glicose

Man – D-Manose

DCE - Dicloroetano

BSP - Hidrato de sal dissódico de sulfobromoftaleína

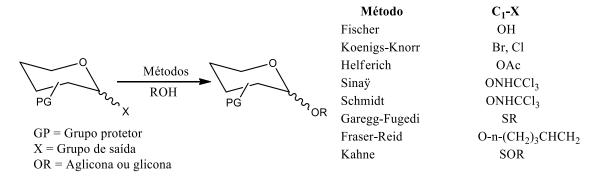

MCPBA – Ácido *m*-cloroperbenzóico

SUMÁRIO

1.	INTRODUÇÃO	11
1.1.	METODOLOGIA	14
1.2.	OBJETIVO	16
1.2.1	1. OBJETIVOS ESPECÍFICOS	16
2.	ASPECTOS HISTÓRICOS DOS PRINCIPAIS MÉTODOS DE o -GLICOSI 17	LAÇÃO
2.1.	DEFINIÇÃO DE GLICOSILAÇÃO E CARACTERÍSTICAS GERAIS	17
2.2.	PRINCIPAIS MÉTODOS DE <i>O</i> -GLICOSILAÇÃO	17
3.1.	MECANISMO	23
3.2.	SÍNTESE A PARTIR DE O-GLICOSÍDEOS	27
3.3.	SÍNTESE A PARTIR DE HALOGENETOS	29
3.4.	SÍNTESE A PARTIR DE <i>O</i> -IMIDATOS	31
3.5.	SÍNTESE A PARTIR DE TIOGLICOSÍDEOS	34
3.6.	SÍNTESE A PARTIR DE GLICAIS	37
4.	REAÇÃO	39
4.	1. REAÇÃO DE <i>O-</i> GLICOSÍDEOS	39
4.	2. REAÇÃO DE HALOGENETOS	44
4.	3. REAÇÃO DE <i>O-</i> IMIDATOS	47
4.	4. REAÇÃO DE TIOGLICOSÍDEOS	53
4.	5. REAÇÃO DE GLICAIS	59
5.	APLICAÇÕES DA GLICOSILAÇÃO	62
6.	CONSIDERAÇÕES FINAIS	66
7.	REFERÊNCIAS	67

1. INTRODUÇÃO

Os carboidratos são amplamente encontrados na natureza nas formas de polissacarídeos, oligossacarídeos, dissacarídeos e monossacarídeos. Estruturas glicosídicas possuem uma glicona (porção sacarídica) conjugada via ligação glicosídica com uma aglicona (porção sacarídica ou outra molécula). Os O-glicosídeos podem ser elucidados pelo tipo de arranjo espacial de seus átomos, diferindo na posição da ligação glicosídica no carbono 1 (C-1) em relação à configuração da cadeia lateral do carbono 5 (C-5), sendo conhecidos por estereoisômeros (anômeros) alfa (α) ou beta (β) glicosídeos, sendo a sua formação favorecida por fatores termodinâmicos, cinéticos e estereoeletrônicos (Figura 1).



GP = Grupo protetor i = Ataque pela face superior ii = Ataque pela face inferior **Figura 1.** Estereosseletividade sem assistência anquimérica via mecanismo S_N1 .

O favorecimento de estereoisômeros está interligado a diversos fatores como a orbitais HOMO (em inglês highest occupied molecular orbital)/LUMO (lowest unoccupied molecular orbital), efeito do solvente, temperatura, pressão, tipo de catalisador, grupos protetores (assistência anquimérica), o grupo de saída na posição C-1, concentração, e entre outros fatores. A glicosilação sucede pela substituição nucleofílica podendo ocorrer de maneira unimolecular (S_N1) ou bimolecular (S_N2) dependendo dos fatores citados anteriormente (DEMCHENKO, 2003).

A primeira estratégia de glicosilação publicada foi desenvolvida por Emil Fischer (1893) a partir da D-glicose catalisada por um ácido de Brønsted – Lowry (HCl) em

metanol, obtendo uma mistura isomérica de maior rendimento da ligação 1,2-transglicosídica (FISCHER, 1893). Poucos anos depois, Koenigs e Knorr (1901) fizeram utilização de glicosídeos halogenados empregando sais de prata, obtendo-se majoritariamente a formação do β-estereoisômero) (KOENIGS e KNORR, 1901). Em 1926, Helferich fez expansão da metodologia Koenigs-Knorr aos O-glicosídeos incorporando sais de mercúrio II, promovendo melhor β-seletividade (HELFERICH e KLEIN, 1926). Somente aproximadamente 50 anos depois, em 1978, Sinaÿ introduziu o emprego de O-imidato, como grupo ativado na posição C-1, catalisada por um ácido prótico, obtendo a estereosseletividade da 1,2-trans-O-imidato (SINAŸ, 1978). Em 1986, Schmidt adaptou a metodologia de obtenção de O-imidato por meio de uma base forte no qual promoveu a diastereosseletividade na preparação dos O-glicosídeos pela formação do α - e β -O-imidato que ativada por um ácido fraco obtém assim, ligações cis e trans-glicosídicas (SCHMIDT, 1986). No mesmo ano, Garreg e Fügedi obteve 1,2-cisligação glicosídica a partir dos derivados tio-glicosil catalisado por um reagente eletrofílico, empregando o trifluorometanossulfonato de dimetil-metiltio-sulfônio (DMTST) (FÜGEDI et al., 1986). O-n-Pentenil glicosídeo foi abordado por Fraser-Reid em 1988 na presença de um ativador suficientemente eletrofílico como o perclorato de dicolidina iodada, obtendo assim uma mistura de proporção 3:1 dos anômeros α/β (FRASER-REID et al., 1988). O método utilizado por Kahne em 1989 levou à obtenção de α- e β-glicosídeos com bons rendimentos, a partir de sulfóxidos glicosídeos promovidos cataliticamente pelo anidrido trifílico (KAHNE et al., 1989). A figura 2 apresenta os principais aspectos históricos da glicosilação.

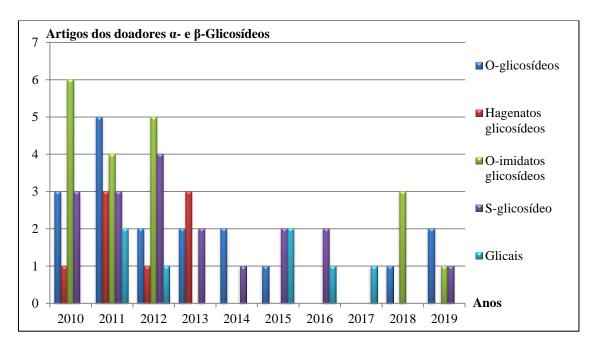
Figura 2. Métodos sintéticos de *O*-glicopiranosídeos.

O processo de glicosilação é desafiador no desenvolvimento de novos métodos estratégicos para a obtenção dos α - ou β -O-glicosídeos visando à produção de novas

biomoléculas sintéticas que poderão ser utilizadas pela indústria farmacêutica (ZHANG e WANG, 2015).

Recentemente, diversos fármacos promissores a base de carboidratos na forma de monossacarídeos substituídos, polissacarídeos e oligossacarídeos com ação antidiabética, antibiótico, antiepilético e dentre outros estão atuando como drogas terapêuticas, como visto na figura 3 (FERNÃNDEZ-TEJADA, *et al.*, 2015).

Figura 3. Drogas terapêuticas de derivados de carboidratos.


Diante da importância deste tema, foi proposta uma revisão bibliográfica descrevendo e compreendendo a evolução sobre os principais protocolos sintéticos na preparação de *O*-glicosídeos desenvolvidos pela comunidade científica de 2010 a 2019 e demonstrando a sua importância na síntese de novas moléculas bioativas.

1.1. METODOLOGIA

O desenvolvimento deste projeto é para elaboração da Monografia em Licenciatura Plena em Química e da necessidade por um aprofundamento científico acerca do tema, principalmente através de estudos em livros e trabalhos publicados em periódicos científicos.

A pesquisa e seleção dos artigos e textos relacionados aos métodos sintéticos para obtenção de *O*-glicopiranosídeo e suas aplicações na síntese de moléculas bioativas focalizou-se no período dos anos de 2010 a 2019 e em cinco periódicos de impacto internacional com as maiores publicações na área da Síntese Orgânica: Tetrahedron Letters, Carbohydrate Research, The Journal of Organic Chemistry, Journal of Carbohydrate Chemistry e Synthesis. Os dados obtidos sofreram uma análise rigorosa para a construção deste trabalho.

A pesquisa dos artigos foi realizada no banco de dados da Scielo, Science Direct, Elsevier e também no Portal de Periódicos da CAPES que facilitou a obtenção de textos de qualidade e que visam o desenvolvimento científico, obtendo após seleção 69 artigos. Como ilustrado na figura 4, a organização dos artigos dos doadores glicosídeos em C-1 utilizados versus o tempo.

Figura 4. Doadores α - e β -glicosídeos empregados de 2010 a 2019.

Mediante esses dados, é notável a ausência do uso de alguns doadores glicosídeos para promover o processo de *O*-glicosilação nesse curto período de tempo, logo atribui valor em novas perspectivas de pesquisas acerca dos carboidratos da série D.

A análise dos dados obtidos se deu pela procura da rota sintética mais vantajosa pelos altos rendimentos e agregados numa aplicação bioativa.

A seguir, demonstraremos os aspectos históricos da glicosilação, os principais doadores glicosil empregados, seguido com as condições reacionais e os rendimentos, além das aplicações das novas moléculas obtidas através da síntese.

1.2.OBJETIVO

Elaborar uma revisão com um texto sobre os métodos de *O*-glicosilação e suas aplicações na síntese de compostos bioativos.

1.2.1. OBJETIVOS ESPECÍFICOS

- Descrever os diversos tipos de metodologias para formação de Oglicosídeos.
- Compreender a evolução das metodologias e sua importância.
- Relatar a aplicação dos *O*-glicosídeos com ênfase nos últimos 9 anos.

2. ASPECTOS HISTÓRICOS DOS PRINCIPAIS MÉTODOS DE *O*-GLICOSILAÇÃO

2.1. DEFINIÇÃO DE GLICOSILAÇÃO E CARACTERÍSTICAS GERAIS

A reação de glicosilação é um processo que ocorre a partir de um doador monossacarídeo e um aceptor (em geral ROH), podendo sofrer ativação por um catalisador para tornar possível a formação de uma ligação glicosídica. Os compostos derivados glicosídicos, vastamente encontrados na natureza são baseados na ligação glicosídeo-aglicona ou glicosídeo-glicona, do qual a aglicona pode ser um composto não açucarado que atua como o agente nucleofílico receptor na posição do C-1 que comumente é relatado por meio de um átomo de enxofre, nitrogênio, oxigênio, fósforo, ou carbono (DEMCHENKO, 2003).

A estereosseletividade possui dependência devido a tais fatores: de catalisador utilizado, a densidade eletrônica na região anomérica; o grupo de saída e grupos anquiméricos; o meio reacional relacionado à solvente, temperatura, pressão e volume; o mecanismo reacional, ocorrendo por substituição nucleofílica unimolecular (S_N1) ou bimolecular (S_N2), dependendo da estabilidade termodinâmica e cinética do composto; definindo assim a configuração anomérica (Esquema 1) (ALLEN e KISAILUS, 1992).

GP = Grupo protetor GS = Grupo de saída R = Aglicona ou glicona

Esquema 1: Reação de *O*-glicosilação.

O estudo desse tipo de reação se torna cada vez mais importante e desafiador devido à carência de protocolos sintéticos na obtenção de β -O-glicosídeos, visto que os ligantes preferem a conformação α devido estabilidade termodinâmica.

2.2. PRINCIPAIS MÉTODOS DE O-GLICOSILAÇÃO

As principais metodologias desenvolvidas a partir de poliálcoois cíclicos conduziram a grandes avanços na química orgânica sintética de carboidrato. A facilidade de ativação do grupo de saída, modificação do meio reacional, excelentes

rendimentos com regio- e estereosseletividade, agregou valor na obtenção de diversas novas biomoléculas, conforme os métodos descritos a seguir.

Método de Fischer

Em 1893, Emil Fischer realizou adaptação do método de Michael para preparação sintética de *O*-glicosídeos, partindo da D-glicose na presença de álcool metílico com adição de HCl até atingir a saturação que em pouco tempo foi capaz de reduzir totalmente a um sólido branco cristalino de metil-α-D-glicopiranosídeo com formação de α-β-glicopiranosídeos, tendo majoritariamente o α-anômero. Iniciando a reação com o meio catalítico de 0,7% de HCl e com diminuição na temperatura para 20 °C, obtendo uma mistura dos isômeros α- e β-glicofuranose, aumentando a concentração de HCl para 4% em refluxo, originou uma mistura dos glicosídeos (Esquema 2) (FISCHER, 1893; ARIAS, 2010).

Esquema 2: Método sintético de Fischer.

Método de Koenigs-Knorr

Em 1901, Koenigs e Knorr modificaram a metodologia de *O*-glicosilação, utilizando brometo de 2,3,4,6-tetra-*O*-acetil-α-D-glicopiranosídeo, em presença de um álcool, sendo ativado pelo excesso de carbonato de prata em temperatura ambiente, obteve exclusivamente o β-*O*-glicosídeo, notando-se a regiosseletividade na substituição nucleofílica, sendo diastereosseletivo na substituição do carbono anomérico. Observou também ser possível o emprego catalítico de sais de metais pesados ou ácido de Lewis em baixas temperaturas, obtendo essencialmente β-seletividade anomérica na preparação de *O*-glicosídeos (Esquema 3) (KOENIGS e KNORR, 1901; LÁSZLÓ e CZAKÓ, 2005).

$$\begin{array}{c|c} AcO & OAc \\ AcO & OAc \\ AcO & OAc \\ \hline \\ Ag_2CO_3 & AcO & OAc \\ \hline \\ AcO & OAc \\ \hline \end{array}$$

Esquema 3: Método sintético de Koenigs-Knorr.

Método de Helferich

Helferich e Klein introduziu em 1926 uma eficiente glicosilação a partir do brometo de 2,3,4,6-tetra-*O*-acetil-β-D-glicopiranosídeo catalisada por sais de mercúrio II como cianeto de mercúrio II e brometo de mercúrio II, obtendo rendimentos maiores que 70%, demonstrando ser um método vantajoso e eficiente na síntese de aquil- e aril-β-*O*-glicosídeo pela saída fácil do grupo acetil anomérico (Esquema 4) (HELFERICH e KLEIN, 1926; ARIAS, 2010).

Esquema 4: Método sintético de Helferich.

Método de Sinaÿ

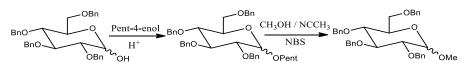
Em 1978, Sinaÿ publicou a obtenção exclusiva do β -O-imidato glicosil obtido a partir do brometo 2,3,4,6-tetra-O-acetil- α -D-glicopiranosídeo com N-metil-acetamida ativado por óxido de prata e N,N-diisopropiletilamina (DIPEA) com o emprego de um ácido de Brønsted – Lowry na presença de um álcool, obtendo alta seletividade na ligação β -O-imidato glicosil (Esquema 5). Os estudos revelaram que em presença de uma base orgânica ocorre a formação do α -glicosídeo devido ao produto ser termodinamicamente estável a face β -imidato, no entanto ao utilizarmos uma base inorgânica forte, obtém essencialmente o β -glicosídeo com interação ao α -tricloroacetamidato, proporcionando excelente estereosseletividade no meio reacional (SINAŸ, 1978).

Esquema 5: Método sintético de Sinaÿ.

Método de Schmidt

Schmidt em 1986 discutiu sobre a obtenção dos diastereoisômeros O-glicosídeos, a partir do 2,3,4,6 tetra-O-benzil-D-glicopiranosídeo pela ativação com uma base forte di-isopropilamida de lítio (LDA) e na presença de tricloroacetonitrila a temperatura baixa, promovendo o equilíbrio químico de proporção (1:1) entre os anômeros α - e β -tricloroacetamida glicosil, onde a posição alfa é termodinamicamente mais estável dependendo da temperatura, pressão e os fatores do solvente e a face beta é cineticamente mais favorável com o aumento da temperatura. A mistura na presença de um álcool catalisado por um ácido fraco, provoca a desproteção do grupo imidato, tornando-o diastereosseletivo pela formação da ligação glicosídica (α) e (β), (Esquema 6) (SCHMIDT, 1986 e 1989).

Esquema 6: Método sintético de Schmidt.


Método de Garegg-Fügedi

Fügedi e Garegg descreveram em 1986 a utilização de derivados β-tioglicopiranosídeo presente em meio de um ácido de Lewis como (DMTST) em diclorometano ou acetonitrila, observando a falta de estereosseletividade pela formação da mistura 1,2-trans e 1,2-cis-*O*-glicosídeos, porém o C-2 protegido com um grupo acila acarreta a formação exclusiva da ligação 1,2-trans-*O*-glicosídica, estruturando ser um método β-seletivo. O uso do brometo de 2,3,4,6-*O*-benzil-α-D-glicopiranosídeo em excesso de brometo de tetrabutilamônio com DMTST, promoveu apenas a ligação cisglicosídica, demonstrando α-seletividade (Esquema 7) (FÜGEDI *et al.*, 1986).

Esquema 7: Método sintético de Garegg-Fügedi.

Método de Fraser-Reid

Em 1988, Fraser-Reid fez exploração do método de glicosilação de Fischer a partir do 2,3,4,6-tetra-O-benzil-D-glicose em meio ácido com pent-4-enol produzindo essencialmente o pent-4-enil-α e β-D-glicosídeo. O O-pent-4-enil glicosídeo foi submetido a presença de metanol com acetonitrila e N-bromosuccinimida (NBS) por 3 horas observando a formação da mistura diastereoisomérica de proporção 1:3 de alfa e beta, respectivamente do metil tetra-O-benzil-D-glicopiranosídeo com 87% de rendimento (Esquema 8); utilizando o perclorato de dicolidina iodada como catalisador, notou-se a sua eficiência na diminuição do tempo reacional passando para 30 minutos e com 75% de rendimento, mantendo a proporção isomérica anterior. Mudou-se também o solvente para diclorometano em perclorato de dicolidina iodada, aumentando para 85% de rendimento com proporções de (1.2:1) da ligação α- e β-glicosídica. Fez também manipulação de uma mistura (1:4) de DCM e Et₂O, durando 24 horas a reação para obter 75% de rendimento da mistura (3:1) dos α- e β-O-glicosídeos. Apresentando doadores glicosilas vantajosos na preparação de O-glicosídeos, provenientes da regiosseletividade obtida com o grupo de saída na posição anomérica (FRASER-REID et al., 1988).

Esquema 8: Método sintético de Fraser-Reid.

Método de Kahne

Em 1989, os estudos realizados por Kahne apresentaram ser altamente β-seletivo partindo do glicosil fenil sulfóxido de 2,3,4,6-tetra-O-pivaloil-D-glicopiranosídeo em DCM e anidrido trifluorometanossulfônico (Tf₂O) a -78 °C na presença de um nucleófilo alcoólico em meio básico utilizando o 2,6-di-tert-butil-4-metilpiridina, então iniciou o processo de aquecimento até -24 °C, atingindo o final da reação e obtendo 83% de rendimento. Em relação ao fenil sulfóxido de 2,3,4,6-tetra-O-benzil-D-glicopiranosídeo em tolueno originou uma mistura diastereoisomérica de proporção (27:1) de α - e β -glicosídeos, respectivamente e com rendimento de 86%. Fez substituição do solvente por diclorometano ou propanonitrila obtendo majoritarimente a ligação β -glicosídica, apontando ser uma rota sintética eficaz (Esquema 9) (KAHNE et al., 1989).

Esquema 9: Método sintético de Kahne.

Diante disso, é perceptível mesmo pelas limitações do âmbito científico da época, foi possível iniciar uma nova abordagem na síntese com carboidratos e, portanto é possível analisar o desenvolvimento dos novos protocolos sintéticos empregados atualmente.

3. SÍNTESE DE *O*-GLICOSÍDEOS E MECANISMO GERAL DE GLICOSILAÇÃO

Em ascensão do século XX, a síntese de *O*-glicosídeos impulsionou o surgimento de novos métodos para a formação da ligação glicosídica partindo de variados doadores glicosil, demostrando oportunidade para os químicos orgânicos sintéticos apresentarem à comunidade científica uma ampla diversidade de novos protocolos na *O*-glicosilação (YANG, ZHANG e YU, 2015).

Na última década, são relatadas diversas ocorrências dos avanços e adaptações na obtenção de compostos *O*-glicosídeos com alta estereosseletividade, regiosseletividade e excelentes rendimentos dependendo das condições reacionais da síntese, dissipando de certo modo um dos maiores desafios da síntese orgânica, como serão discutidos um pouco a diante.

3.1. MECANISMO

As estratégias eficazes na síntese química de *O*-glicosídeos chamou atenção para o desenvolvimento de métodos estereosseletivos, devido à falta de estereosseletividade que certos compostos apresentam pela complexidade e por questões reacionais, atribuindo interesse nos estudos mecanísticos acerca do favorecimento na obtenção de ligações glicosídicas. Comumente, o protocolo glicosídico é seguido pela substituição nucleofílica unimolecular (S_N1), mas também é relatada em diversos artigos a rota de substituição nucleofílica bimolecular (S_N2) com ampla eficiência e rapidez na conversão em produtos (Figura 5).

De modo geral, a reação de glicosilação é proveniente da interação de um glicosídeo doador com um ativador/catalisador (E-Nu), resultando na formação de uma espécie eletropositiva pela dissociação do grupo de saída e então ocorre o ataque do receptor glicosídico. Esta reação pode decorrer no caminho da formação do cátion glicosil, estabilizado via o íon oxacarbenio (**A**). Também pode proceder pelo suporte do grupo protetor ligado ao C-2, caso seja do grupo acil formará o intermediário aciloxonio (**B**). Portanto, essas transições permite ser glicosilado pelo receptor glicosídeo (ROH) ou qualquer outra espécie suficientemente nucleofílica (**C**), podendo gerar outros compostos reativos ou não reativos (hidrólise, eliminação, ciclização, rearranjo, dentre outros; portanto a estrutura atacada determinará o estereoisômero formado ou a mistura diastereoisomérica de α- e/ou β-glicosídeo (RANADE e DEMCHENKO, 2013).

Figura 5. Mecanismo geral de glicosilação.

A classe dos grupos de saídas em seu crescente desenvolvimento proporciona o estudo e elucidação reacional dos intermediários e produtos obtidos pelos diversos caminhos de ativação existentes na glicosilação. A esta investigação percebeu o comportamento de vários grupos doadores ao tipo catalítico, podendo ser classificada como:

a) A ativação direta, onde o agente eletrofílico atua como ativador complexando ao heteroátomo do grupo doador, acontecendo geralmente em hemiacetal, haletos e a tioglicosídeos, contribuindo para o aumento da carga formal positiva do carbono anomérico (Esquema 10), facilitando o ataque nucleofílico.

Esquema 10. Ativação direta do grupo de saída glicosila.

b) A ativação remota pode ocorrer de dois modos, (**A**) o heteroátomo Y próximo ao heteroátomo X que sofre ativação ou (**B**) acontece pela complexação a Z, correspondendo aos ésteres glicosídeos, carbonatos, carbamatos, *O/S*-imidato glicosídeo, alqueno glicosídeo e entre outros (Esquema 11).

Esquema 11. Ativação remota do grupo de saída glicosila.

c) E a ativação bidentada, ocorrendo de maneira direta ou remota, dependendo dos componentes químicos empregados, geralmente a fosfito glicosídeo, *orto*-alilfenil glicosídeo e tioimidatos glicosídeo, todos são passivos deste comportamento (Figura 6).

Figura 6. Ativação bidentada do doador glicosil

É perceptível a atenção que este tipo de reação provoca, devido as diferentes vias reacionais e seus comportamentos no decorrer da estratégia sintética perante variados ativadores e condições reacionais, dificultando toda a elucidação do mecanismo e aumentando o interesse investigativo dos cientistas.

3.2. SÍNTESE A PARTIR DE O-GLICOSÍDEOS

A reação de obtenção de *O*-glicosídeos se tornaram uns dos métodos mais empregados na síntese de glicosídeos desde 1926 pela sua rápida e fácil preparação, β-seletividade e cineticamente mais estável, gerando alta reatividade no grupo de saída abrindo caminhos mais eficientes para obtenção dos *O*-glicopiranosídeo, como em seguida são expressos.

Em 2010, Yao e colaboradores reportaram a glicosilação com β-estereosseletividade em radiação de micro-ondas a partir de mono e dissacarídeos β-penta-*O*-acetil-D-galactosil e glicosil com derivado do ácido amino fluorenilmetiloxicarbonilo (ácido amino Fmoc) catalizado por um ácido de Lewis (SnCl₄ ou BF₃·OEt₂) conseguindo bons rendimentos e utilizados na síntese de glicopeptídeos com possível atividade antimicrobiana (Esquema 12).

Sucedendo, Rajaganesh *et al.*, (2010) reportaram a síntese de derivados β -*O*-glicosil pelo promotor BF₃·OEt₂ na presença de álcool propargílico, conseguindo bons rendimentos, β -seletividade e todos apresentaram atividade antioxidante (Esquema 13).

Na mesma época, Zhang, Wei e Du (2010) descreveram o uso de derivados 1,2-diol-glicopiranose (Esquema 14), o qual sofreu o processo de formação da ligação glicosídica no carbono anomérico e ao carbono vizinho, catalizado por *N,N'*-diciclohexilcarbodiimida (DCC) e 4-dimetilaminopiridina (DMAP) com ácido 4-hidroxicinâmico, obtendo excelentes rendimentos de uma mistura diastereoisomérica com maior proporção β e contendo boa atividade inibidora enzimática.

No ano seguinte, Gold *et al.*, (2011) propuseram a síntese de *O*-glicopiranosídeos pela ligaçãoβ com ótimos rendimentos, empregando o difenil sulfóxido (Ph₂SO) na catálise do grupo de saída 1-hidroxil glicosil com receptores 3-hidroxil-*O*-fenil-glicosil, conseguindo exclusivamente a conformação β (Esquema 15).

Em outra perspectiva, Mossotti e Panza (2011) destacaram os doadores 1-hidroxil glicosil serem altamente α-seletivo e fornece ótimos rendimentos na preparação de *O*-glicopiranosídeos, promovido pela mistura do óxido de trifenilfosfina e Tf₂O, formando o agente glicosilante de Hendrickson *in situ* o trifluorometanossulfonato de anidrido de trifenilfosfónio (Ph₃P)₂O(OTf)₂ com receptor 4-hidroxil tiofenilglicosil benzilado e álcoois (Esquema 16).

Em 2011, Wang e colaboradores desenvolveram a síntese de tetrassacarídeos com caráter α-estereosseletivo, caracterizando a antígenos importantes da bactéria *Bacillus*

anthracis exosporium com a utilização no diagnóstico e produção de vacina antibacteriana, onde se iniciou com prop-1-enil glicosil como doador sucedendo à ativação glicosídica com a mistura NIS e TfOH agregando a 2-(OH)- e 3-(OH)-glicopiranosídeos com excelentes rendimentos (Esquema 17).

Neste mesmo ano, Liao *et al.*, (2011) dispuseram do *orto*-2-hex-1-in-1-il-benzoato-*O*-glicosídeo para glicosilar com derivados terpenóicos de protopanaxadiol através do bis-(trifluorometanossulfonil)imidato trifenilfosfina de ouro (I) (PPh₃AuNTf₂), assim obtendo exclusivamente a conformação β com excelentes rendimentos e empregando na síntese de biomoléculas (Esquema 18).

Na mesma perspectiva, Matsuo *et al.*, (2011) empregaram derivados 2- α -O-glicosil-3-metoxipiridina para obter majoritariamente o β -D-glicosídeos pela consequente interação com o ácido cis-cinâmico e de um solvente polar aprótico, atuando na fase catalítica e culminando na estereosseletividade, excelentes rendimentos e alta regiosseletividade, mesmo ausente de grupo protetor (Esquema 19).

Conseguinte, Luo *et al.*, (2012) propõem a inovação dos doadores 2-alilofenil glicosil para ocorrência exclusiva do α-*O*-glicosídeo (Esquema 20) com a mistura ativadora monocloreto de iodo (ICl) e AgOTf com monossacarídeos e agliconas arila e alila, obtendo assim bons rendimentos de α-D-manopiranosídeos e caracterizando fragmentos do fármaco com ação despolimerizadora do DNA.

Em conjunto, outra divisão de doadores potencializou a otimização do método de obtenção de *O*-glicosídeos são as 2-ozaxolinas, justo pela fácil proteção e excelentes rendimentos, proporcionando maiores chances à glicosilação. Diante do exposto, Pertel *et al.*, (2012) retratam o emprego de derivados 3,4,6-tri-*O*-acetil-α-D-glicopiranose-2-ozaxolina, ativado com 2,4,6-trimetilpiridina (s-colidina) em ácido perclórico, glicosilando a agliconas e gliconas, conseguindo a ligação β-*O*-glicopiranosídeo com bons rendimentos (Esquema 21).

Outro relato de 1-hidroxil glicosil foi realizado por Reddy *et al.*, (2013) com a metodologia one-pot na obtenção *in situ* do intermediário imidato glicosil pelo 2,3,4,6,7,8,9,10-octa-hidropirimidol-[1,2-a]-azepina (DBU), seguindo assim para a β-glicosilação com o TMSOTf em frente à (**R**)- e (**S**)-álcool alifático com bons rendimentos e aplicados à síntese de glicopeptídeos (Esquema 22).

Não muito tempo atrás, um novo doador eficientemente estável e passivo de ativação por um ácido de Lewis foi caracterizado por Tatsumi *et al.*, (2013) no processo

de glicosilação, o borofosfato glicosil sofreu ativação pelo TfOH na presença do colesterol, obtendo-se bons rendimentos e alta seletividade α e β (Esquema 23).

Nessa linha de pensamento da modificação, levou Davis *et al.*, (2014) empregarem derivados trimetilsililo glicosil e galactosil na metodologia one-pot, conseguindo o intermediador iodeto piranose pelo iodeto de trimetilsililo (TMSI), seguindo para ativação com DIPEA na presença do colesterol, obtendo exclusivamente a ligação α-*O*-glicopiranosídeo e foram utilizados na síntese de fragmentos bacterianos (Esquema 24).

Um ano depois nessa mesma perspectiva de inovação, Rasmussen e colaboradores (2014) propuseram a otimização da glicosilação com doadores 1-O-Piruvato galactosil com excelentes rendimentos pela ativação com triflato de bismuto em quantidades catalíticas em conjunto a álcoois primários e secundários e em poucos minutos, obtendo β -O-glicosídeos, porém o aumento da temperatura e do tempo reacional provoca o rearranjo na posição anomérica, obtendo exclusivamente o α -O-glicopiranosídeos (Esquema 25).

Em 2015, voltou-se o reporte de doadores *orto*-2-hex-1-in-1-il-D-manopiranosídeo, como é tratado pelos autores Sun *et al.*, (2015) utilizando dos α- e β-*O*-manosil, catalizado por ouro(I), obtendo exclusivamente a ligação β-*O*-glicopiranosídeo com receptores álcoois primário e secundário a ótimos rendimentos, além disso foram empregados na síntese de glicolipídeos pelo possível caráter biológico (Esquema 26).

Semelhante é feito pelo grupo Shaw, Thakur e Kumar (2018) fazendo uso do cloreto de ouro(III) (AuCl₃) para ativação de doadores fenilpropriolato glicosil e OHagliconas e gliconas, conseguindo obter a estereosseletividade α-*O*-glicosídeos com bons rendimentos (Esquema 27).

Recentemente, Liang e colaboradores (2019) introduziram os doadores *orto*-alilobenzoato galactosil e manosil na presença de TMSOTf e receptores sacarídeos, terpenóides e álcoois alquilos com ótimo rendimento na β-seletividade para a formação de *O*-glicosídeos (Esquema 28).

3.3. SÍNTESE A PARTIR DE HALOGENETOS

A abordagem feita por Koenigs e Knorr em 1901 proporcionaram avanços na síntese de glicopiranosídeos e manopiranosídeos com pela alta reatividade, regiosseletividade, estereosseletividade e facilidade na obtenção de haletos glicosídeos, impactando diretamente no desenvolvimento metodológico de obtenção desses compostos, como referidos a seguir.

Em 2010, Karelin *et al.*, relatam a conquista de *O*-glicosídeo a partir do alfa brometo manosil na presenta de AgOTf com recebedor α-tiomanosil originando a ligação oligossacarídica com excelentes rendimentos, sendo utilizados na síntese de polissacarídeos correspondente a fragmentos das células que atua nos antígenos antifúngico (Esquema 29).

Em seguida, Hou e Kovác (2011) introduziram a rota de obtenção de O-glicopiranosídeos, partindo de brometo acetatogalactosil com AgOTf na presença de hemiacetal, originando a ligação β -O-1 \rightarrow 3 com excelentes rendimentos e empregados na sequência sintética qual corresponderá a um fragmento bacteriano (Esquema 30).

Em pouco tempo, Ren *et al.*, (2011) relatam a utilização do peracetilado bromo glicopiranose na glicosilação com o carbonato de potássio (K_2CO_3) e derivado da quercetina pela possível ação biológica, obtendo com bom rendimento β -O-glicosídeo (Esquema 31).

Na mesma linha de reacional, Zhang *et al.*, (2011) tornou público os métodos sintéticos de obtenção de *O*-glicosídeos a base de derivados flavonóicos da quercetina, partindo do brometo benzilacetilado glicosil em K₂CO₃, promovendo assim a ligação β-*O*-glicopiranosídeo, do qual empregou em um método sequencial para a obtenção de um trissacarídeo com atividade antidepressiva (Esquema 32).

No ano seguinte, uma abordagem diferente é apresentada por Soulage *et al.*, (2012) empregando o brometo 3,4,6-tri-*O*-acetil glicosil com ativação do brometo de benziltrietilamônio (BnEt₃NBr), obtendo especialmente β-seletividade (Esquema 33) e caracterizando como substrato na síntese da cirsimarina, o qual possui atividade antilipogênica.

Em pouco tempo depois, o doador brometo manosil foi empregado por Chen e Tan (2013) com alta eficiência na síntese O-glicopiranosídeo pelo receptor hidroxil manosil catalisada pelo AgOTf, obtendo excelente rendimento na mistura α -O-glicosídeos em proporções (α : β = 10:1) e sendo aplicados na obtenção de glicoamino ácido, visando atividade biológica (Esquema 34).

Em outra perspectiva, o doador iodeto glicosídeo proporcionou α-glicosilação em 2013 a Cao *et al.*, pela ativação básica da TTBP com derivado do glicerol, obtendo com

bons rendimentos a ligação α-*O*-glicosídeo e partindo para a síntese de glicolipídeos (Esquema 35).

No mesmo ano, o fluoreto glicosídeo foi introduzido por Manabe e Ito (2013) na glicosilação com hidroxil glicona pela ativação com trifluorometanossulfonato de háfnio (Hf(OTf)₄), obtendo a mistura diastereoisomérica com excelentes rendimentos, adquirindo valor na síntese de *O*-glicopiranosídeos (Esquema 36).

3.4. SÍNTESE A PARTIR DE *O*-IMIDATOS

Os derivados acetimidatos β-glicosídeo por Sinaÿ em 1977 e Schmidt em 1986 com diastereoisomerismo viabilizou o interesse na área devido sua facilidade de síntese e bastante reatividade regioespecífica, trazendo modificações e ampliações na obtenção dos glicosídeos, conforme são explanados a seguir.

Comumente é encontrado o processo de glicosilação com etapas de obter um doador glicosil suficientemente estável para a purificação e então, originar o O-glicosídeo, porém Shirahata *et al.*, (2010) reportaram a síntese one-pot de oligossacarídeos utilizando de 1-hidroxil carboidrato para conseguir o intermediário acetimidato glicosídeo e por meio da ativação do agente eletrofílico (TMSClO₄) com o receptor 6-hidroxil monossacarídeo em peneira molecular, obtendo a mistura racêmica de $1\rightarrow 6$ dissacarídeos na proporção (α : β = 93:7) com excelentes rendimentos (Esquema 37).

Neste mesmo ano, Wang e Auzanneau (2010) discutiram o emprego do α -tricloroacetimidato glicosídeo com ativação do trifluorometanossulfonato de trimetilsililo (TMSOTf) e na presença de receptores 3-hidroxil-galactosil, conseguindo essencialmente com excelentes rendimentos o β -1 \rightarrow 3-O-glicosídeo (Esquema 38) e foram aplicados como percursores na síntese de oligossacarídeos caracterizados como fragmentos tumorais associados aos antígenos de células tumorais.

Ainda em 2010, Zhang e colaboradores descreveram a obtenção exclusiva de β-*O*-glicosídeos, oriundo da ativação da mistura de tricloroacetamidato glicosil em TMSOTf na presença de receptores (**R**)-álcoois de cadeia longa conseguindo ótimos rendimentos e devido ao caráter lipofílico da aglicona, empregou-se na síntese de glicolipídios de ação antimicrobiana (Esquema 39).

Seguindo nesse mesmo período, Khaja e associados (2010) conquistaram a predominância na ligação α-glicosídeo com excelentes rendimentos devido a assistência

anquimérica do 2-naftilmetil (NAP) no *O*-imidado glicosídeo com ativação do TMSOTf para a formação da ligação glicosídica com alta α-seletividade através de receptores derivados 3-hidroxil glicosídeos (Esquema 40).

Nessa mesma fase, Pastore e contribuidores (2010) fizeram emprego catalítico do trifluorometanosulfonato de bismuto (Bi(OTf)₃) no doador trifluoroacetimidato manosil e receptor 2-hidroxil manosil em condições anidras para fornecer exclusivamente a ligação α-dissacarídica com bons rendimentos, e devido ao efeito estérico do grupo protetor em C-2 (Fmoc), contribuiu positivamente ao estereoisômero α (Esquema 41).

Após 33 anos da sua primeira abordagem, Schmidt e cooperadores com os derivados acetimidatos, apresentou um protocolo vantajoso na obtenção de O-glicosídeos utilizando do β -O-imidato glicopiranosídeo benzilado na presença de TMSOTf e com ataque do monossacarídeo 6-hidroxil-O-glicopiranosídeo para formar a mistura diastereoisomérica da ligação $1\rightarrow 6$ glicosídica com excelentes rendimentos (Esquema 42).

Um ano depois, Kalikhanda e Li (2011) experimentaram a glicosilação com ativador TMSOTf, partindo do doador 2-azida-2-desoxi-α-galactosídeo e receptor 2-hidroxil-β-glicosídeo em temperatura ambiente , obtendo *O*-glicopiranosídeos com ótimos rendimentos (Esquema 43).

Contudo em meses depois, os mesmos autores publicaram o emprego do doador 2-azida-2-desoxi- α -galactosídeo com o mesmo catalisador e sofrendo ataque com 6-hidroxil açúcar, conseguindo obter α -seletividade e excelentes rendimentos (Esquema 44).

Semelhante é feito por Zhu e Ralph (2011), demonstrando a obtenção de *O*-glicosídeos através de doadores tetra-*O*-cloroacetil glicosídeo na presença de derivados feruloil e sinapoil, devido a promoção do TMSOTf para a formação da ligação diastereoisomérica glicosídica com bons rendimentos (Esquema 45) e tendo potencial biológico, por causa da interação enzimática existente dos derivados aglicônicos utilizados.

Utilizando ainda doadores imidatos no mesmo ano, Walvoort e colaboradores (2011) sintetizaram O-glicosídeos a partir do 6-Fmoc- α -O-imidato glicosídeo com catalisador ácido tríflico a face de 4-hidroxil tiofenil glicosídeo, obtendo altos rendimentos com bastante α -estereosseletividade na ligação $1 \rightarrow 4$ (Esquema 46).

Diferentemente, em 2012 é relatado por Li *et al.*, a melhor eficiência do BF₃·OEt₂ em relação ao TMSOTf como ativador, devido promover β-estereosseletividade de *O*-

glicosídeos com excelentes rendimentos, partindo de 3,4,6-tri-*O*-acetil-imidato glicopiranosídeo com glicosilantes fenólicos (Esquema 47).

Todavia, um eficiente método de glicosilação é pontuado por Mattson *et al.*, (2012) com o uso de doadores α-imidato manosil, glicosil e galactosil agregados a porções catalíticas de sais de índio III com receptores álcoois alquilo e arilo, obtendo com rapidez e bons rendimentos os *O*-glicopiranosídeos com caráter diastereosseletivo (Esquema 48).

Também no mesmo ano, Sarkar, Dutta e Kumar (2012) obtiveram a ligação glicosídica em radiação de micro-ondas, a partir do α-tricloroacetimidato manopiranosídeo com ativador trifluorometanossulfonato de cobre (Cu(OTf)₂) na presença do álcool propargílico para assim formar com ótimos rendimentos exclusivamente o anômero α (Esquema 49).

Em outro víeis, Ren e colaboradores (2012) empregaram o α -O-imidatos glicosil na presença do ativador TMSOTf e álcoois terpenóides e açúcares para a obtenção com ótimos rendimentos de β -O-glicopiranosídeos e empregando na síntese de antivirais (Esquema 50).

Simultaneamente, Manzo *et al.*, (2012) também conteve eficientes na síntese de *O*-glicosídeos através de doadores α-imidato glicosil e galactosil com ativação de Lewis pelo BF₃·OEt₂ em meio do receptor derivado do glicerol, conseguindo exclusividade a ligação β-*O*-glicosídeo, aplicando-os na obtenção de glicolipídios pela possível atividade biológica (Esquema 51).

Só então no ano passado, os doadores imidatos foram empregados por Lu *et al.*, (2018) na forma de α -tricloroacetimidato glicosil com a ativação por TMSOTf a frente de álcoois primário ou secundário, obtendo exclusivamente β -O-glicosídeos, logo utilizados na síntese de oligossacarídeos (Esquema 52).

Em conjunto, Yang e colaboradores (2018) manipularam α -imidato galactosídeo com receptores monossacarídeos, sofrendo ativação pelo BF₃·OEt₂ para a obtenção da ligação *O*-glicopiranosídeos β -1 \rightarrow 4, e constituindo-se precursor na síntese de oligossacarídeos (Esquema 53).

Juntamente, Mishra, Singh e Kandasamy (2018) fizeram apropriação do ácido de Lewis tris(pentafluorofenil)boro como promoter da estereosseletividade, perante doadores imidatos galactosídeo, manosídeo e glicosídeo a álcoois gliconas e agliconas, conseguindo excelentes rendimentos de *O*-glicopiranosídeos (Esquema 54).

Atualmente, Zhang *et al.*, (2019) pontuaram a síntese de β-*O*-glicosídeo pelo doador α-imidato galactosídeo com ativação do ácido TMSOTf e agregando ao 4-hidroxil-*O*-glicosídeo, obtendo bons rendimentos e empregando-o na síntese de glicolipídeos e na análise conformacional de carboidratos (Esquema 55).

3.5. SÍNTESE A PARTIR DE TIOGLICOSÍDEOS

Desde a primeira abordagem realizada por Garegg-Fügedi em 1986 com derivados S-glicosil, notou-se o comportamento de ser um dos doadores mais eficaz na promoção da glicosilação, devido à alta estabilidade e a proporcionalidade de fácil ativação do grupo anomérico, sendo exibidas em seguida com detalhes as novas abordagens sintéticas feita aproximadamente nos últimos 10 anos.

Em 2010, iniciou-se com a introdução de líquidos iônicos na fase catalítica à síntese de glicosídeos discutida por Galan *et al.*, (2010) empregando a base imidazólio (300 μ L), obtendo a mistura diastereoisomérica com alto rendimento da ligação $1\rightarrow 6$ glicosídica, partindo de doadores β -tioglicosil na presença de NIS e 6-hidroxil- α -açúcar (Esquema 56).

No mesmo período, Kaeothip e colaboradores (2010) aprimoraram estudos da estereosseletividade dos compostos tioglicosídeos, obtendo dissacarídeos com α -1 \rightarrow 6-seletividade na proporção de (α : β = 9.5:1) e com altos rendimentos, utilizando do *S*-benzoxazolil glicosil mediante ativação pelo AgOTf para glicosilar com 6-hidroxil glicosídeo (Esquema 57).

Seguindo no mesmo ano, Beaver e Woerpel (2010) utilizaram 2-desoxi-tioglicosil para a obtenção de *O*-glicosídeos pela ativação com o NIS em face de álcoois com variações em seu caráter eletronegativo, gerando maior seletividade alfa com o aumento da eletronegatividade da aglicona (Esquema 58).

No ano seguinte, Adamo *et al.*, (2011) propagam a formação da ligação $1\rightarrow 3-\beta$ -O-glicosídica através de receptores 3-hidroxil glicosídeos e doadores tiofenil glicosídeo pela mistura de NIS e TfOH, levando a obtenção de bons rendimentos e são empregados na síntese de polissacarídeos com ação antifúngica (Esquema 59).

Também foi elucidado a formação da ligação exclusivamente α -seletiva por Li, Zhu e Kalikanda (2011) com o uso do doador tiogalactopiranosil agregando a monossacarídeos pela mistura ativadora NIS e TMSOTf para glicosilar com ótimos rendimentos de $1\rightarrow 6$ -, $1\rightarrow 4$ - e $1\rightarrow 2$ - α -O-glicopiranosídeos (Esquema 60).

Ainda os doadores tioglicopiranosil foram descritos por Kaeothip, Jagodige e Demchenko (2011) na síntese de α -glicosídeo através da ativação com o bromo (Br₂) para a formação essencial *in situ* do β -brometo glicosídeo, permitindo assim a obtenção exclusiva do estereoisômero α na presença de álcoois primário e secundário com rendimentos medianos (Esquema 61).

Fang *et al.*, (2012) inovaram com o método one-pot para obtenção de β-*O*-glicopiranosídeos, partindo de β-tiogalactosídeo ativada por NIS e TMSOTf a receptores derivados terpenóicos em C-1 e monossacarídeos acetilados em C-2 conseguindo bons rendimentos e com ação antitumoral (Esquema 62).

Em vista da inovação, Maity, Basu e Ghosh (2012) reportaram a síntese one-pot de $1\rightarrow 4$ -trissacarídeo com formação *in situ* do intermediário α -O-glicosídeo catalisado em duas etapas por N-(p-metilfeniltio)- ϵ -caprolactamato e TMSOTf entre os doadores STol glicosídeos e receptores 4- e 6-hidroxil sacarídeo, do qual promove a formação do O-glicopiranosídeo com bons rendimentos, apresentando alta estereosseletividade (Esquema 63).

Consequente também em 2012, os pesquisadores Liu e Wei (2012) utilizaram de STol-glicosil na síntese de *O*-glicosídeos pela mistura de NIS e TfOH para promoção da ligação glicosídica com receptores monossacarídeo e amino álcool primário com excelentes rendimentos (Esquema 64).

Em vista na facilidade de obter *O*-glicopiranosídeos, é trazido pelo grupo de pesquisa de Yang *et al.*, (2012) com o β-tioglicosídeo sofrendo o processo ativação na presença de sais de ouro (I) para acoplar com o colesterol e álcoois primário e secundário de monossacarídeos e alquilos, obtendo com bons rendimentos majoritariamente a conformação α-*O*-glicopiranosídeo (Esquema 65).

O ano de 2013 se iniciou com o reporte feito por Gao e Guo empregando derivado α -STol-manopiranosídeo para a exclusiva α -glicosilação em one-pot com AgOTf e TTBP com receptadores gliconas, a fim da formação glicosídica em $1\rightarrow 6$ - α -O-glicopiranosídeos (Esquema 66), empregando-os na obtenção de glicolipídios pela possível bioatividade.

Na mesma sequência, foi abordado por Ohara *et al.*, (2013) certas inovações na síntese de oligossacarídeos, descrito a partir de derivados tioglicosídeos e receptores açúcares com ativação da TTBP para a formação exclusiva da ligação β-*O*-glicosídica com bons rendimentos e utilizando-os na síntese de polissacarídeo caracterizado como anticancerígeno e antidiabético (Esquema 67).

Após um ano, Padungros, Alberch e Wei (2014) aperfeiçoaram a obtenção de O-glicopiranosídeos, usando doadores 2-hidroxil ditiocarbomato glicosídeo (1.0 equiv.) na presença de sais de cobre triflato (2.0 equiv.) apresentando caráter β-seletivo e regiosseletivo mesmo pela ausência do suporte anquimérico do C-2 aos receptores álcoois glicólicos e aglicólicos, tornando-o percursor de tetrassacarídeo β-(1 \rightarrow 6)-O-glicopiranosídeo a fim da possível interação biológica (Esquema 68).

Em 2015, é incrementado por Buda *et al.*, (2015) a *O*-glicosilação na influência de 2-*O*-2-nitrobenzil e 2-*O*-2-cianobenzil para melhor efetivação do ataque nucleofílico em C-1 dos tiofenil glicosídeo, permitindo assim com Ph₂SO obter excelentes rendimentos na ligação β-*O*-glicosídeo mediante álcoois primários e secundários (Esquema 69).

Juntamente se deu a volta dos derivados *S*-glicosídeo abordado por Dulaney *et al.*, (2015) via sais de prata triflato (AgOTf) com porção 4-hidroxil-*S*-glicosídeo para a formação única da ligação α-*O*-glicosídica com ótimo rendimento, do qual contribuiu para o processo de mapeamento reacional via enzimático na biossíntese e com aplicação direta na síntese de hexassacarídeos (Esquema 70).

Em 2016, o efeito anquimérico no C-2 proporcionou a glicosilação, como é dito por Heuckendorff, Poulsen e Jensen (2016) os grupos substituintes no éster em C-2 (X = CN, Cl, H ou OMe) influenciaram na reatividade de ativação anomérica do *S*-glicosídeo (1.0 equiv.), dos quais o *p*-metoxibenzil teve melhor desempenho para a formação de β-*O*-glicosídeos, mediante a mistura catalítica de NIS e TfOH com o receptor terpenóico, obtendo excelentes rendimentos (Esquema 71).

No mesmo ano, Maiti e Jayaraman (2016) reportam a intraglicosilação (glicosilação entre a própria glicona) mediante várias etapas para obtenção do doador trissacarídeo, das quais é iniciada pelo hemiacetal p-tioglicosil pela ativação de NIS e TfOH com 4-hidroximetil-O-glicosídeos para então a formação essencialmente da ligação α -1 \rightarrow 4-O-glicosídeo cíclico (Esquema 72).

Nos dias de hoje, Susanto *et al.*, (2019) fizeram descrição dos doadores β-tioglicosil, mediante promoção ativadora pela mistura NIS e TfOH a receptores monossacarídeos, obtendo exclusivamente a ligação β-*O*-glicosídica (Esquema 73), onde foram empregados na síntese de polissacarídeo caracterizado como fragmento celular bacteriano.

3.6. SÍNTESE A PARTIR DE GLICAIS

Diante de todos os doadores glicosil encontrados na atual literatura, uma nova abordagem de doador vem adquirindo interesse na síntese de carboidrato. A presença da ligação insaturada proporciona alta seletividade α -O-glicosídeo denominado comumente como D-glucal e assim decorreu ao desenvolvimento de avanços significativos na síntese de insaturados O-glicosídeos, os quais são elucidados a seguir.

Os primeiros doadores *O*-pent-4-enil glicosídeo abordado por Fraser-Reid desencadeou na comunidade científica a busca de utilizar-se desses glicopiranosídeos para originar a novos derivados glicosídicos passível de ser uma molécula bioativa. Em 2011, o grupo de Kumar *et al.*, efetuaram com sucesso a obtenção da conformação do anômero α com altos rendimentos, empregando 2,3-insaturado-*O*-alilglicosídeo (1.0 equiv.) ocorrendo glicosilação com de álcoois acíclicos e cíclios, de cadeia longa saturada e base nitrogenada, catalisada pela mistura de NBS com um ácido de Lewis (Zn(OTf)₂), conseguindo diversos 2,3-insaturados-α-*O*-glicopiranosídeos (Esquema 74).

Outro método que tem sido bastante manuseado a fim da obtenção de O-glicopiranosídeo é através da mistura intermediária $in\ situ$ dos epóxidos, permitindo alta α -seletividade devido ao menor efeito estérico em relação ao C-2, contribuindo para que a mistura glicosídica contenha majoritariamente o estereoisômero alfa como é discutido por Marín $et\ al.$, (2011) a glicosilação α -dissacarídica através da formação dos epóxidos estimulado pelo agente epoxidante ácido m-cloroperbenzóico (MCPBA), agindo na insaturação do D-glucal, e então produzindo a formação do O-glicosídeos pelo TMSOTf na presença de 2-hidroxil benzil glicosídeo, promovendo alta estereosseletividade e bons rendimentos a ligação $1\rightarrow 2-O$ -glicosídeo (Esquema 75).

Entretanto, Cui *et al.*, (2012) pontua a síntese exclusiva de 2-deoxy- α -O-D-glicosídeo por meio de doadores 3,4,6-tri-O-benzil-D-glucal e galactal diante da mistura ativadora do iodo trimetilsilano (TMSI) e PPh₃ sucedendo pelo ataque de gliconas 4- e 6-hidroxil, dos quais todas majoritariamente predominou o anômero α , agregando assim valor no desenvolvimentos de α -O-glicopiranosídeos (Esquema 76).

Três anos depois, os cientistas Kimura, Takahashi e Toshima (2015) demonstraram a síntese total de *O*-glicopiranosídeos diante ativação de NIS em compostos fosfórilados com D-glucal benzilado a face de álcoois alifático e cíclico com bons rendimentos da mistura de 2-iodo-*O*-glicopiranosídeo e 2-iodo-*O*-manopiranosídeo ou a mistura de 2-desoxi-*O*-glicosídeos (Esquema 77).

No mesmo tempo, Melo *et al.*, (2015) consolidaram a otimização com α-seletividades em 2,3-insaturados D-glucal, empregando o tri-*O*-acetil-D-glucal com montmorilonita K-10/5% FeCl₃ e receptores derivados álcoois alcinil, obtendo essencialmente *O*-glicopiranosídeos com excelentes rendimentos (Esquema 78), dos quais serviram de substrato na síntese de derivados triazoícos, focalizando na busca de bioatividades.

Seguindo adiante, Costa *et al.*, (2016) também fizeram emprego do tri-*O*-acetil-D-glucal pelas condições reacionais com o BF₃·OEt₂ ou montmorilonita K-10 em 5% FeCl₃, estabelecendo a ligação α-*O*-glicosídica ao carbonato de glicerol, obtendo uma mistura racêmica com bons rendimentos e foram aplicados na síntese de análogos glicoglicerolipídeos pela possível ações bioativas (Esquema 79).

Contudo, o ano de 2017 iniciou com o retorno da obtenção de α-deoxyglicosídeos, como é comentado em Palo-Nieto *et al.*, (2017) o emprego da metodologia one-pot com doadores D-glucais e receptores álcoois primário e secundário, catalizado pela tioureia e um ácido de Brønsted-Lowry, cujo define a estereosseletividade da ligação do *O*-glicopiranosídeo, conseguindo obter em ótimos rendimentos a ligação desoxi-α-*O*-glicosídeo (Esquema 80).

Diante desses métodos glicosídicos, nota-se a constante evolução na síntese de carboidratos, devido ao fato de excelentes rendimentos e a oportunidade da criação de diferentes moléculas bioativas com funcionalidade farmacêutica, tornando importância para a sociedade o uso desses compostos.

4. REAÇÃO

4.1. REAÇÃO DE O-GLICOSÍDEOS

Esquema 12: Síntese a partir de *O*-acetil-glicosil.

Esquema 13: Emprego de *O*-acetil-glicosil.

Esquema 14: Glicosilando 1,2-diol glicosil.

$$\begin{array}{c} \text{OMe} \\ \text{BzO} \\ \text{DCM, -20 °c} \\ \text{OH} \\ \text{OH} \\ \text{Si} \\ \text{OH} \\ \text{OH} \\ \text{Si} \\ \text{OH} \\ \text{OH$$

Esquema 15: Glicosilação β-*O*-glicopiranosídeo.

Esquema 16: Glicosilação α-*O*-glicopiranosídeo.

$$\begin{array}{c} \text{OBn} \\ \text{OAc} \\ \\ \text{OBn} \\ \\ \text{OBn}$$

Esquema 17: Glicosilação a partir do prop-1-enil glicosil.

Esquema 18: Glicosilação a partir do *orto-*2-hex-1-in-1-il-benzoato-*O*-glicosil.

Esquema 19: Glicosilação a partir do 2-α-*O*- glicosil-3-metoxipiridina.

Esquema 20: Obtenção de O-glicosídeos.

Esquema 21: Glicosilação a partir do 2-oxazolina-α-*O*-glicosil.

Esquema 22: Síntese do β -*O*-glicopiranosídeo.

Esquema 23: Glicosilação do borofosfato O-glicosil.

Esquema 24: Síntese a partir do TMS-O-glicosil.

AcO
$$OPiv$$
 $OPiv$ OPi

Esquema 25: Glicosilação a partir do β-1-*O*-Piv-D-galactosil.

Esquema 26: Glicosilação a partir do O-manosil.

Esquema 27: Glicosilação

Esquema 28: Glicosilação do *orto*-alilo glicosil.

4.2. REAÇÃO DE HALOGENETOS

Esquema 29: Glicosilação a partir do brometo manosil.

Esquema 30: Glicosilação com brometo galactosil.

AcO
$$AcO$$
 AcO AcO

Esquema 31: Glicosilação a partir do brometo glicosil.

Esquema 32: Glicosilação a partir do brometo glicosil benzilacetilado.

Esquema 33: Glicosilação a partir do brometo 3,4,6-tri-*O*-acetil glicosil.

Esquema 34: Glicosilação a partir do brometo 3,4,6-tri-*O*-acetil manosil.

Esquema 35: Glicosilação a partir do iodeto α-glicosídeo.

BnO OBn OBn OBn OBn O Doador Rend. (
$$\alpha$$
: β)

OBn O α : β = 1:4) 91% (3:7)

OBn O OBn O

Esquema 36: Glicosilação a partir do fluoreto glicosídeo.

4.3. REAÇÃO DE O-IMIDATOS

BnO
$$OBn$$
 OBn OBn

Esquema 37: Síntese a partir do acetimidato glicosídeo.

Esquema 38: Síntese a partir do α-tricloroacetimidato glicosídeo.

Esquema 39: Síntese a partir do tricloroacetimidato glicosídeo.

Esquema 40: Síntese a partir do 2-naftilmetil-*O*-imidato glicosídeo.

$$\begin{array}{c} \text{BnO} \\ \text{OFmoc} \\ \text{BnO} \\ \text{OFmoc} \\ \text{OFmoc} \\ \text{OFmoc} \\ \text{OFmoc} \\ \text{OFmoc} \\ \text{OFmoc} \\ \text{BnO} \\ \text{OFmoc} \\ \text{OFmoc} \\ \text{BnO} \\ \text{OFmoc} \\ \text{OF$$

Esquema 41: Síntese a partir do trifluorofenilacetimidato glicosídeo.

Esquema 42: Síntese com *N*-arilo-*O*-glicopiranosídeo.

Aco
$$OBn$$
 OBn OBn

Esquema 43: Síntese a partir do 2-azida-2-desoxi-α-galactosídeo.

Esquema 44: Síntese a partir do α-*O*-imidato galactosídeo.

Esquema 45: Síntese a partir do tetra-*O*-cloroacetil glicosídeo.

$$\begin{array}{c} \text{DFMOC} \\ \text{BNO} \\ \text{OBn} \\ \text{OBn} \\ \text{OCCl}_3 \end{array} \\ \begin{array}{c} \text{DFMOC} \\ \text{BNO} \\ \text{OBn} \\$$

Esquema 46: Síntese a partir do α-*O*-imidato glicopiranosídeo.

Esquema 47: Síntese a partir do *O*-imidato glicosil.

X	Y	\mathbf{W}	\mathbf{Z}	Catalisador	R	$\mathbf{R_1}$	Rend. $(\alpha:\beta)$
OAc	Н	OAc	Н	$InBr_3$	OAc	n-butil	81% (α)
OAc	Н	OAc	Н	$InCl_3$	OAc	Benzil	72% (α)
Н	OBn	Н	OBn	$In(OTf)_3$	OBn	2-(2-azidoetoxi)etil	72% (β)
H	OBn	Н	OBn	$In(OTf)_3$	OBn	Benzil	68% (β)

Esquema 48: Síntese de *O*-glicopiranosídeos.

Esquema 49: Síntese de α-*O*-glicopiranosídeos.

Esquema 50: Síntese de β -O-glicopiranosídeos.

Esquema 51: Síntese a partir de α-tricloroimidatos glicosídeos.

Esquema 52: Síntese com α-tricloroacetimidato glicosil.

$$\begin{array}{c} \text{Ph} \\ \text{Devo} \\ \text{Ph} \\ \text{COl}_3 \end{array} \begin{array}{c} \text{Ph} \\ \text{Devo} \\$$

Esquema 53: Síntese a partir do α-tricloroacetimidato galactosídeo.

Esquema 54: Síntese de O-glicopiranosídeos

Esquema 55: Síntese a partir do α-imidato galactosídeo.

4.4. REAÇÃO DE TIOGLICOSÍDEOS

Esquema 56: Síntese a partir do S-glicosil.

Esquema 57: Síntese a partir de tioglicosídeos.

Esquema 58: Síntese a partir do 2-desoxi-tioglicosil.

Esquema 59: Síntese a partir do tiofenil glicosil.

Esquema 60: Síntese de α-*O*-glicosídeos.

Esquema 61: Síntese a partir do S-glicosídeo.

Esquema 62: Síntese de β-galactosídeos.

Esquema 63: Síntese a partir dos β -tioglicosídeos.

Esquema 64: Síntese a partir de β-tioglicosídeo.

Esquema 65: Glicosilação a partir do β -tioglicosídeo.

Esquema 66: Glicosilação a partir de derivados tioglicosídeos.

Esquema 67: Glicosilação a partir do tioglicosídeo.

Esquema 68: Glicosilação a partir de derivados tioglicosídeos.

Esquema 69: Glicosilação a partir de derivados tioglicosil.

Esquema 70: Glicosilação a partir do tioglicosídeo.

Esquema 71: Glicosilação com receptor terpenóico.

Esquema 72: Glicosilação com *p*-tioglicosil.

Esquema 73: Glicosilação com β-tioglicosil.

4.5.REAÇÃO DE GLICAIS

Esquema 74: Glicosilação do 2,3-insaturado-*O*-but-2-enil glicosídeo.

Esquema 75: Glicosilação com D-glucal.

Esquema 76: Síntese com 2-desoxi-α-*O*-glicosídeo.

Esquema 77: Síntese de O-glicosídeos.

Esquema 78: Síntese de 2,3-insaturados alcinil-*O*-glicopiranosídeos.

Esquema 79: Síntese de α-*O*-glicosídeos.

OBN R X R₁ Rend. (
$$\alpha$$
: β)

OBN R A -OMe OBN 86% (>30:1)

OHBNO OHBNO

Esquema 80: Síntese de 2-desoxi-*O*-glicosídeos.

5. APLICAÇÕES DA GLICOSILAÇÃO

Atualmente, a sociedade de maneira geral vive em situações e tem certos hábitos que podem desencadear diversos males à saúde, assim necessitando a produção de novos compostos contra as doenças que devastam a humanidade.

5.1. NA SÍNTESE DE MOLÉCULAS BIOATIVAS

A busca dessas espécies bioativas é estudas em produtos naturais, buscando plantas que contém compostos bioativos, a fim de sua caracterização e de uma possível nova série de moléculas com relevância para indústria farmacêutica e podendo desencadear uma rota sintética para o mesmo. Como pode ser visto na figura 7, carboidratos de fonte natural, contendo atividade bioativa e com síntese total (YANG, ZHANG e YU, 2015).

Figura 7. Complexos naturais β -*O*-glicosídeos.

Anticancerígeno Formamicina - 58%

5.2. NA INDÚSTRIA FARMACÊUTICA

Recentemente também foram incluídas diversas drogas farmacêuticas já comercializadas a base de carboidratos e potencialmente com ação terapêutica, antitumoral, antihepática, antiviral e dentre outros, como pode ser visto na figura 8, polissacarídeos com atividade antitumoral (ZHANG e WANG, 2015).

Figura 8. Complexos *O*-glicosídeos com atividade antitumoral.

5.3. NA QUÍMICA DOS MATERIAIS

Além disso, a obtenção desses compostos tem sido intensificada em escala global, auxiliando na área da estética, alimentícia, alimento para animais, assim como outras e tem despertado atração para a pesquisa de obtenção e caracterização dessas moléculas bioativas com sua funcionalidade biológica (GIESE *et al.*, 2011; ELICITYL, 2013). A figura 9 expõe os *O*-glicosídeos utilizados em cosméticos, entre outros.

Oligossacarídeo Xiloglucano - Umectante

Maltose - Encadernação, formações de filmes, condicionamento da pele

Figura 9. O-glicosídeos na química dos materiais.

A descoberta desses compostos serão oportunidades nítidas de apresentar novos avanços e melhorarias em toda a área da síntese orgânica e ampliar suas aplicações biológicas.

6. CONSIDERAÇÕES FINAIS

Controle da estereosseletividade é favorecido pela inserção de certos reagentes e condições do meio reacional, considerando maior eficácia e rentabilidade dos produtos finais da glicosilação. Aproximadamente nesses 10 anos, muitos pesquisadores aprimoraram e se dedicaram a produzir protocolos bastante eficientes, independentes dos doadores e aceitadores glicosídicos empregados. A grande parte das metodologias empregadas está interligada a certos grupos de saída, podendo gerar a glicosilação mediante os doadores *O*-glicosídeo, halogenado glicosídeo, *O*-imidato glicosídeo, *S*-glicosídeo, glicais e intermediários epóxidos, sendo eficientemente consolidados por reagentes específicos, solventes, ativadores e temperatura, conseguindo obter a espécie previamente desejada com alta seletividade de α- e/ou β-*O*-glicopiranosídeos. Diante disso, é possível visar um método, o qual é capaz de fornecer a regio e estereosseletividade com altos rendimentos a partir de diferentes gliconas doadoras.

7. REFERÊNCIAS

ADAMO, R.; TONTINI, M.; BROGIONI, G.; ROMANO, M. R.; COSTANTINI, G.; DANIELI, E.; PROIETTI, D.; BERTI, F.; COSTANTINO, P. Synthesis of Laminarin Fragments and Evaluation of a β-(1,3) Glucan Hexasaccaride-CRM197 Conjugate as Vaccine Candidate against Candida albicans, *Journal of Carbohydrate Chemistry*, v. 30, n. 4-6, p. 249-280, **2011**.

ALLEN, H. J.; KISAILUS, E. C. *Glycoconjugates: Composition, Structure and Function*. New York, Estados Unidos da América: Biblioteca do congresso, **1992.**

ANDERSSON, F.; FÜGEDI, P.; GAREGG, P. J.; NASHED, M. Synthesis of 1,2-cislinked glycosides using dimethyllmethylthiolsulfonium triflate as promoter and thioglycosides as glycosyl donors. *Tetrahedron Letters*, v. 27, n. 33 p. 3919-3922, **1986**.

ARIAS, M. B. Química de los glicósidos. México: Instituto Politécnico Nacional, 2010.

BEAVER, M. G.; WOERPEL, K. A. Erosion of Stereochemical Control with Increasing Nucleophilicity: O-Glycosylation at the Diffusion Limit, *The Journal of Organic Chemistry*, v. 75, n. 4, p. 1107-1118, **2010**.

BUDA, S.; NAWOÍ, M.; GOŁĘBIOWSKA, P.; DYDUCH, K.; MICHALAK, A.; MLYNARSKI, J. Application of 2-Substituted Benzyl Groups in Stereoselective Glycosylation, *Journal of Organic Chemistry*, v. 80, n. 2, p. 770-780, **2015**.

CAO, B.; CHEN, X.; YAMARYO-BOTTE, Y.; RICHARDSON, M. B.; MARTIN, K. L.; KHAIRALLAH, G. N.; RUPASINGHE, T. W. T.; O'FLAHERTY, R. M.; O'HAIR, R. A. J.; RALTON, J. E.; CRELLIN, P. K.; COPPEL, R. L.; MCCONVILLE, M. J.; WILLIAMS, S. J. Synthesis, Structural Elucidation, And Biochemical Analysis of Immunoactive Glucuronosyl Diacylglycerides of Mycobacteria and Corynebacteria, *The Journal of Organic Chemistry*, v. 78, n. 6, p. 2175-2190, **2013**.

CHEN, L.; TAN, Z. A convenient and efficient synthetic approach to mono-, di-, and tri-O-mannosylated Fmoc amino acids, *Tetrahedron Letters*, v. 54, n. 17, p. 2190-2193, **2013**.

COSTA, P. L. F.; MELO, V. N.; GUIMARÃES, B. M.; SCHULER, M.; PIMENTA, V.; ROLLIN, P.; TATIBOUËT, A.; OLIVEIRA, R. N. Glycerol carbonate in Ferrier reaction: Access to new enantiopure building blocks to develop glycoglycerolipid analogues, *Carbohydrate Research*, v. 436, p. 1-10, **2016**.

CUI, X.-K.; ZHONG, M.; MENG, X.-B.; LI, Z.-J. The synthesis of 2-deoxy-α-D-glycosides from D-glycals catalyzed by TMSI and PPh₃, *Carbohydrate Research*, v. 358, n. 1, p. 19-22, **2012**.

DAVIS, R. A.; FETTINGER, J. C.; GERVAY-HAGUE, J. Tandem Glycosyl Iodide Glycosylation and Regioselective Enzymatic Acylation Affords 6-*O*-Tetradecanoyl-α-D-cholesterylglycosides, *Journal of Organic Chemistry*, v. 79, n. 17, p. 8447-8452, **2014**.

DEMCHENKO, A. V. 1,2-cis-O-glycosylation: Methods, Strategies, Principles. *Current Organic Chemistry*, v. 7, n. 1, p. 35-79, **2003.**

DULANEY, S. B.; XU, Y.; WANG, P.; TIRUCHINAPALLY, G.; WANG, Z.; KATHAWA, J.; EL-DAKDOUKI, M. H.; YANG, B.; LIU, J.; HUANG, X. Divergent Synthesis of Heparan Sulfate Oligosaccharides, *Journal of Organic Chemistry*, v. 80, n. 24, p. 12265-12279, **2015**.

ELICITYL, 2013. Disponível em: https://www.elicityl-oligotech---carbohydrates-for-cosmetic-applications_24.pdf. Acesso em 02-07-2019.

FANG, M.; GU, L.; GU, G.; FANG, J. Facile Synthesis and Antitumor Activities of Timosaponin AIII and Its Analogs, *Journal of Carbohydrate Chemistry*, v. 31, n. 3, p. 187-202, **2012**.

FERNÃNDEZ-TEJADA, A.; CAÑADA, F. J.; JIMENEZ-BARBERO, J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. *Chemistry*: A *European Journal*, v. 21, p. 10616-10628, **2015**.

FISCHER, E. Ueber die Gluooside der Alkohole. *Chemische Berichte*, v. 26, n. 3, p. 2400-2412, **1893**.

FRASER-REID, B.; KONRADSSON, P.; MOOTOO, D. R.; UDODONG, U. Direct Elaboration of Pent-4-enyl Glycosides Into Disaccharides. *Journal of the Chemical Society Chemical Communications*, v. 0, n. 12, p. 823-825, **1988.**

GALAN, M. C.; JOUVIN, K.; ALVAREZ-DORTA, D. Scope and limitations of imidazolium-based ionic liquids as room temperature glycosylation promoters. *Carbohydrate Research*, v. 345, n. 1, p. 45-49, **2010**.

GAO, J.; GUO, Z. Synthesis of a Tristearoyl Lipomannan via Preactivation-Based Iterative One-Pot Glycosylation, *Journal of Organic Chemistry*, v. 78, n. 24, p. 12717-12725, **2013**.

GIESE; E. C.; HIROSI, T.; SILVA, M. L. C.; SILVA, R.; BARBOSA, A. M. Produção, propriedades e aplicações de oligossacarídeos, *Semina: Ciências Agrárias*, v. 32, n. 2, p. 683-700, **2011**.

GOLD, H.; MUNNEKE, S.; DINKELAAR, J.; OVERKLEEFT, H. S.; AERTS, J. M. F. G.; CODÉE, J. D. C.; MAREL, G. A. V. D. A practical synthesis of capped 4-methylumbelliferyl hyaluronan disaccharides and tetrasaccharides as potential hyaluronidase substrates, *Carbohydrate Research* v. 346, n. 12, p. 1467-1478, **2011**.

HELFERICH, B.; KLEIN, W. Zur Synthese von Disacchariden IV Zwei Tetra-acetyl-β-D-glucosen. *Liebigs Annalen*, v. 450, n. 1, p. 219-229, **1926.**

HEUCKENDORFF, M.; POULSEN, L. T.; JENSEN, H. H. Remote Electronic Effects by Ether Protecting Groups Fine-Tune Glycosyl Donor Reactivity, *Journal of Organic Chemistry*, v. 81, n. 12, p. 4988-5006, **2016**.

HOU, S.; KOVÁC, P. Synthesis of the conjugation ready, downstream disaccharide fragment of the O-PS of Vibrio cholerae O:139, *Carbohydrate Research*, v. 346, n. 12, p. 1394-1397, **2011**.

KAEOTHIP, S.; AKINS, S. J.; DEMCHENKO, A. V. On the stereoselectivity of glycosidation of thiocyanates, thioimidates, and thioglycosides, *Carbohydrate Research*, v. 345, n. 15, p. 2146-2150, **2010**.

KAEOTHIP, S.; YASOMANEE, J. P.; DEMCHENKO, A. V. Glycosidation of Thioglycosides in the Presence of Bromine: Mechanism, Reactivity, and Stereoselectivity, *The Journal of Organic Chemistry*, v. 77, n. 1, p. 291-299, **2012**.

KAHNE, D.; WALKER, S.; CHENG, Y.; VAN ENGEN, D. Glycosylation of Unreactive Substrates. *Journal of the American Chemical Society*, v. 111, n. 17, p. 6881-6882, **1989**.

KALIKANDA, J.; LI, Z. Study of the stereoselectivity of 2-azido-2-deoxygalactosyl donors: relationship to the steric factors of glycosyl acceptors, *Carbohydrate Research*, v. 346, n. 15, p. 2380-2383, **2011**.

KALIKANDA, J.; LI, Z. Study of the Stereoselectivity of 2-Azido-2-deoxygalactosyl Donors: Remote Protecting Group Effects and Temperature Dependency, *Journal Organic Chemistry*, v. 76, n. 13, p. 5207-5218, **2011**.

KARELIN, A. A.; TSVETKOV, Y. E.; PAULOVICÓVÁ, L.; BYSTRICKÝ, S.; PAULOVICÓVÁ, E.; NIFANTIEV, N. E. Synthesis of 3,6-branched oligomannoside fragments of the mannan from *Candida albicans* cell wall corresponding to the antigenic factor 4. *Carbohydrate Research*, v. 345, n. 10, p. 1283-1290, **2010**.

KHAJA, S. D.; KUMAR, V.; AHMAD, M.; XUE, J.; MATTA, K. L. Novel galactosyl donor with 2-naphthylmethyl (NAP) as the non-participating group at C-2 position: efficient synthesis of α-galactosyl ceramide, *Tetrahedron Letters*, v. 51, n. 33, p.4411-4414, **2010**.

KIMURA, T.; TAKAHASHI, D.; TOSHIMA, K. Glycosylations of Glycals using N-Iodosuccinimide (NIS) and Phosphorus Compounds for Syntheses of 2-Iodo- and 2-Deoxyglycosides, *Journal of Organic Chemistry*, v. 80, n. 19, p. 9552-9562, **2015**. KOENIGS, W.; KNORR, E. Ueber einige Derivete dee Traubensuokers und der Oelaatoee. *Chemische Berichte*, v. 34, n. 1, p. 957-981, **1901**.

KUMAR, B.; AGA, M. A.; ROUF, A.; SHAH, B. A.; TANEJA, S. C. 2,3-Unsaturated Allyl Glycosides as Glycosyl Donors for Selective α-Glycosylation, *The Journal of Organic Chemistry*, v. 76, n. 9, p. 3506-3510, **2011**.

LÁSZLÓ, K.; CZAKÓ, B. *Strategic Applications of Named Reactions in Organic Synthesis*. San Diego, Califórnia: Elsevier Academic Press, **2005**.

LI, Y.; MO, H.; LIAN, G.; YU, B. Revisit of the phenol O-glycosylation with glycosyl imidates, BF₃·OEt₂ is a better catalyst than TMSOTf, *Carbohydrate Research*, v. 363, n. 1, p. 14-22, **2012**.

LI, Z.; ZHU, L.; KALIKANDA, J. Development of a highly α -selective galactopyranosyl donor based on a rational design, *Tetrahedron Letters*, v. 52, n. 43, p. 5629-5632, **2011**.

LIANG, H.; MA, L.; LI, C.; PENG, Q.; WANG, Z.; ZHANG, Z.-X.; YU, L.; LIU, H.; AN, F.; XUE, W. Efficient glycosylation with glycosyl ortho-allylbenzoates as donors, *Tetrahedron Letters*, v. 60, n. 1, p. 84-87, **2019**.

LIAO, J.; SUN, J.; NIU, Y.; YU, B. Synthesis of ginsenoside Rh2 and chikusetsusaponin-LT8 via gold(I)-catalyzed glycosylation with a glycosyl orthoalkynylbenzoate as donor, *Tetrahedron Letters*, v. 52, n. 24, p. 3075-3078, **2011**.

LIU, R.; WEI, A. Solid-Phase Synthesis of 2-Aminoethyl Glucosamine Sulfoforms, *Journal of Carbohydrate Chemistry*, v. 31, n. 4-6, p. 384-419, **2012**.

LU, Y.-J.; LAI, Y.-H.; LIN, Y.-Y.; WANG, Y.-C.; LIANG, P.-H. 2-O-N-Benzylcarbamoyl as a Protecting Group To Promote β-Selective Glycosylation

and Its Applications in the Stereoselective Synthesis of Oligosaccharides, *Journal of Organic Chemistry*, v. 83, n. 7, p. 3688-3701, **2018**.

LUO, S.-Y.; TRIPATHI, A.; ZULUETA, M. M. L.; HUNG, S.-C. 2-Allylphenyl glycosides as glycosyl donors for sugar coupling, *Carbohydrate Research*, v. 352, p. 197-201, **2012**.

MAITI, K.; JAYARAMAN, N. Synthesis and Structure of Cyclic Trisaccharide with Expanded Glycosidic Linkages, *Journal of Organic Chemistry*, v. 81, n. 11, p. 4616-4622, **2016**.

MAITY, S. K.; BASU, N.; GHOSH, R. Efficient activation of thioglycosides with N-(p-methylphenylthio)-ε-caprolactam-TMSOTf, *Carbohydrate Research*, v. 354, n. 1, p. 40-48, **2012**.

MANABE, S.; ITO, Y. Hafnium(IV) Tetratriflate as a Glycosyl Fluoride Activation Reagent, *Journal of Organic Chemistry*, v. 78, n. 9, p. 4568-4572, **2013**.

MANZO, E.; CIAVATTA, M. L.; PAGANO, D.; FONTANA, A. An efficient and versatile chemical synthesis of bioactive glyco-glycerolipids, *Tetrahedron Letters*, v. 53, n. 7, p. 879-881, **2012**.

MARÍN, I.; CASTILLA, J.; MATHEU, M. I.; DÍAZ, Y.; CASTILLÓN, S. Sequential Directed Epoxydation-Acidolysis from Glycals with MCPBA. A Flexible Approach to Protected Glycosyl Donors, *The Journal of Organic Chemistry*, v. 76, n. 23, p. 9622-9629, **2011**.

MATSUO, K.; NISHIKAWA, K.; SHINDO, M. Stereoselective synthesis of β-glycosyl esters of cis-cinnamic acid and its derivatives using unprotected glycosyl donors, *Tetrahedron Letters*, v. 52, n. 43, p. 5688-5692, **2011**.

MATTSON, A. L.; MICHEL, A. K.; CLONINGER, M. J. Using In(III) as a promoter for glycosylation, *Carbohydrate Research*, v. 347, n. 1, p. 142-146, **2012**.

MELO, V. N.; DANTAS, W. M.; CAMARA, C. A.; OLIVEIRA, R. N.; Synthesis of 2,3-unsaturated alkynyl O-glucosides from Tri-O-acetyl-D-glucal by using Montmorillonite K-10/Iron (III) chloride hexahydrate with subsequente copper (I) – catalyzed 1,3-dipolar cycloaddition. *Synthesis*, v. 47, p. 3529-3541, **2015**.

MISHRA, K. B.; SINGH, A. K.; KANDASAMY, J. Tris(pentafluorophenyl)borane-Promoted Stereoselective Glycosylation with Glycosyl Trichloroacetimidates under Mild Conditions, *Journal of Organic Chemistry*, v. 83, n. 7, p. 4204-4212, **2018**.

MOSSOTTI, M.; PANZA, L. Dehydrative Glycosylation with the Hendrickson Reagent, *The Journal of Organic Chemistry*, v. 76, n. 21, p. 9122-9126, **2011**.

OHARA, K.; LIN, C.-C.; YANG, P.-J.; HUNG, W.-T.; YANG, W.-B.; CHENG, T.-J. R.; FANG, J.-M.; WONG, C.-H. Synthesis and Bioactivity of β -(1 \rightarrow 4)-Linked Oligomannoses and Partially Acetylated Derivatives, *Journal of Organic Chemistry*, v. 78, n. 13, p. 6390-6411, **2013**.

PADUNGROS, P.; ALBERCH, L.; WEI, A. Glycosyl Dithiocarbamates: β-Selective Couplings without Auxiliary Groups, *Journal of Organic Chemistry*, v. 79, n. 6, p. 2611-2624, **2014**.

PALO-NIETO, C.; SAU, A.; WILLIAMS, R.; GALAN, M. C. Cooperative Brønsted Acid-Type Organocatalysis for the Stereoselective Synthesis of Deoxyglycosides, *Journal of Organic Chemistry*, v. 82, n. 1, p. 407-414, **2017**.

PASTORE, A.; MATTEO, A.; IADONISI, A.; SILVIA, V. Rapid assembly of gp120 oligosaccharide moieties via one-pot glycosidation-deprotection sequences. *Carbohydrate Research*, v. 345, n. 10, p. 1316-1323, **2010**.

PERTEL, S. S.; KONONOV, L. O.; ZININ, A. I.; CHIRVA, V. J.; KAKAYAN, E. S. Synthesis of some 2-alkoxy glyco-[2,1-d]-2-oxazolines and evaluation of their glycosylation reactivity, *Carbohydrate Research*, v. 356, p. 172-179, **2012**.

RAJAGANESH, R.; JAYAKUMAR, J.; SIVARAJ, C.; RAAMAN, N.; DAS, T. M. Synthesis and antioxidant activity of a novel class of 4,6-*O*-protected *O*-glycosides and their utility in disaccharide synthesis. *Carbohydrate Research*, v. 345, n. 12, p. 1649-1657, **2010**.

RANADE, S. C.; DEMCHENKO, A. V. Mechanism of Chemical Glycosylation: Focus on the Mode of Activation and Departure of Anomeric Leaving Groups, *Journal of Carbohydrate Chemistry*, v. 32, n. 1, p. 1-43, **2013**.

RASMUSSEN, M. R.; MARQVORSEN, M. H. S.; KRISTENSEN, S. K.; JENSEN, H. H. A Protocol for Metal Triflate Catalyzed Direct Glycosylations with GalNAc 1-OPiv Donors, *Journal of Organic Chemistry*, v. 79, n. 22, p. 11011-11019, **2014**.

REDDY, C. R.; JITHENDER, E.; PRASAD, K. R. Total Syntheses of the Proposed Structure for Ieodoglucomides A and B, *Journal of Organic Chemistry*, v. 78, n. 9, p. 4251-4260, **2013**.

REN, S.; CHEN, Q.; DING, N.; ZHANG, W.; LI, Y.; GUO, Y. Synthesis and Biological Evaluation of Analogs of Methyl Ursolate 3-*O*-β-Chacotrioside as H5N1 Viral Entry Inhibitors, *Journal of Carbohydrate Chemistry*, v. 31, n. 8, p. 647-658, **2012**.

REN, X.; SHEN, L.; MURAOKA, O.; CHENG, M. Synthesis of Quercetin 3-O-[6"-O-(trans- p-Coumaroyl)]-β-D-Glucopyranoside, *Journal of Carbohydrate Chemistry*, v. 30, n. 3, p. 119-131, **2011**.

SARKAR, S.; DUTTA, S.; SEN, A. K. Expedient and Facile One-Pot Syntheses of Triazole-Linked Glycoconjugates under Microwave Irradiation, *Synthesis*, v. 44, n. 7, p. 1079-1089, **2012**.

SCHMIDT, R. R. New Methods for the Synthesis of Glycosides and Oligosaccharidesare There Alternatives to the Koenigs-Knorr Method. *Angewandte Chemie International Edition in English*, v. 25, n. 3, p. 212-235, **1986**. SCHMIDT, R. R. Recent developments in the synthesis of glycoconjugates. *Pure and Applied Chemistry*, v. 61, n. 7, p. 1257-1270, **1989**.

SCHMIDT, R. R.; HUCHEL, U.; TIWARI, P. N-Aryl-O-glycosyl Haloacetimidates as Glycosyl Donors, *Journal of Carbohydrate Chemistry*, v. 29, n. 2, p. 61-75, **2010**.

SHAW, M.; THAKUR, R.; KUMAR, A. Gold(III)-Catalyzed Glycosylation using Phenylpropiolate Glycosides: Phenylpropiolic Acid, An Easily Separable and Reusable Leaving Group, *Journal of Organic Chemistry*, v. 84, n. 2, p. 589-605, **2018**.

SHIRAHATA, T.; MATSUO, J.; TERUYA, S.; HIRATA, N.; KURIMOTO, T.; AKIMOTO, N.; SUNAZUKA, T.; KAJI, E.; OMURA, S.; Improved catalytic and stereoselective glycosylation with glycosyl N-trichloroacetylcarbamate: application to various 1-hydroxy sugars, *Carbohydrate Research*, v. 345, n. 6, p. 740-749, **2010**.

SINAŸ, P. Recent advances in glycosylation reactions. *Pure and Applied Chemistry*, v. 50, n. 11-12, p. 1437-1452, **1978**.

SOULAGE, C. O.; GRAND, L.; GÉLOËN, A.; CHAMBERT, S. Total synthesis of cirsimarin and evidence of its lipolytic and antilipogenic activities on human adipocytes, *Tetrahedron Letters*, v. 53, n. 5, p. 480-483, **2012**.

SUN, P.; WANG, P.; ZHANG, Y.; ZHANG, X.; WANG, C.; LIU, S.; LU, J.; LI, M. Construction of β-Mannosidic Bonds via Gold(I)-Catalyzed Glycosylations with Mannopyranosyl ortho-Hexynylbenzoates and Its Application in Synthesis of Acremomannolipin A, *Journal of Organic Chemistry*, v. 80, n. 8, p. 4164-4175, **2015**.

SUSANTO, W.; KONG, K.-H.; HUA, K.-F.; WU, S.-H.; LAM, Y. Synthesis of the trisaccharide repeating unit of capsular polysaccharide from Klebsiella pneumoniae, *Tetrahedron Letters*, v. 60, n. 3, p. 288-291, **2019**.

TATSUMI, S.; MATSUMURA, F.; OKA, N.; WADA, T. Glycosylation of alcohols using glycosyl boranophosphates as glycosyl donors, *Tetrahedron Letters*, v. 54, n. 29, p. 3731-3734, **2013**.

WALVOORT, M. T. C.; MOGGRÉ, G.; LODDER, G.; OVERKLEEFT, H. S.; CODÉE, J. D. C.; MAREL, G. A. V. D; Stereoselective Synthesis of 2,3-Diamino-2,3-dideoxy-β-D-mannopyranosyl Uronates, *The Journal of Organic Chemistry*, v. 76, n. 18, p. 7301-7315, **2011**.

WANG, A.; AUZANNEAU, F. I. Synthesis of LeaLex oligosaccharide fragments and efficient one-step deprotection. *Carbohydrate Research*, v. 345, n. 9, p. 1216-1221, **2010**.

WANG, Y.; LIANG, X.; WANG, P. Concise synthesis of *Bacillus anthracis exosporium* tetrasaccharide via two-stage activation of allyl glycosyl donor strategy, *Tetrahedron Letters*, v. 52, n. 30, p. 3912-3915, **2011**.

YANG, F.; WANG, Q.; YU, B. *ortho*-Alkynylphenyl thioglycosides as a new type of glycosylation donors under the catalysis of Au (I) complexes, *Tetrahedron Letters*, v. 53, n. 39, p. 5231-5234, **2012**.

YANG, S.; LIU, Q.; ZHANG, G.; ZHANG, X.; ZHAO, Z.; LEI, P. An Approach to Synthesize Chondroitin Sulfate-E (CS-E) Oligosaccharide Precursors, *Journal of Organic Chemistry*, v. 83, n. 11, p. 5897-5908, **2018**.

YANG, Y.; ZHANG, X.; YU, B. *O*-glycosylation methods in the total synthesis of complex natural glycosides. *Natural Produt Reports*, v. 32, n. 9, p. 1331-1355, **2015**.

YAO, N.; FUNG, G.; MALEKAN, H.; YE, L.; KURTH, M. J.; LAM, K. S. Facile synthesis of glycosylated Fmoc amino acid building blocks assisted by microwave irradiation. *Carbohydrate Research*, v. 345, n. 15, p. 2277-2281, **2010**.

ZHANG, L.; WEI, G.; DU, Y. Total synthesis of apigenin-4'-yl 2-O-(p-coumaroyl)-β-D-glucopyranoside. *Carbohydrate Research*, v. 345, n. 18, p. 2714-2717, **2010**.

ZHANG, W.; MEREDITH, R.; YOON, M.-K.; WANG, X.; WOODS, R. J.; CARMICHAEL, I.; SERIANNI, A. S. Synthesis and O-Glycosidic Linkage Conformational Analysis of 13C-Labeled Oligosaccharide Fragments of an Antifreeze Glycolipid, *Journal of Organic Chemistry*, v. 84 n. 4, p. 1706-1724, **2019**.

ZHANG, Y.; WANG, F. Carbohydrate drugs: current status and development prospect. *Drugs Disc. & Therap*, v. 9, n. 2, p. 79-87, **2015**.

ZHANG, Y.; WANG, K.; ZHAN, Z.; YANG, Y.; ZHAO, Y. Synthesis of quercetin 3-O-b-D-apiofuranosyl- $(1\rightarrow 2)$ -[α-L-rhamnopyranosyl- $(1\rightarrow 6)$]-β-D-glucopyranoside, *Tetrahedron Letters*, v. 52, n. 24, p. 3154-3157, **2011**.

ZHANG, Z.; ZONG, C.; SONG, G.; LV, G.; CHUN, Y.; WANG, P.; DING, N.; LI, Y. Total synthesis of caminoside B, a novel antimicrobial glycolipid isolated from the marine sponge *Caminus sphaeroconia*. *Carbohydrate Research*, v. 345, n. 6, p. 750-760, **2010**.

ZHU,Y.; RALPH, J. Stereoselective synthesis of 1-*O*-β-feruloyl and 1-*O*-β-sinapoyl glucopyranoses, *Tetrahedron Letters*, v. 52, n. 29, p. 3729-3731, **2011**.