DETERMINAÇÃO ESPECTROFOTOMÉTRICA DO COBRE PELO FENOL VERMELHO + H₂O₂

VERA MARIA SOARES

Aux. de Ensino do Dep. de Química da UFRPE.

RIVALDO ALVES RODRIGUES
Prof. Assistente do Dep. de Química da UFRPE.

O método fundamenta-se na reação de descoramento do fenol vermelho pelo H_2O_2 catalisada pelo ion Cu^{+2} . As condições que mais favoreceram a reação foram: em balões de 25 ml, adicionou-se 1,25 ml do tampão $KH_2PO_4/NaOH$ pH = 6,0, 2,5 ml de H_2O_2 a 3%, 5,6 ml de fenol vermelho a 0,01%, alíquotas de solução de Cu^{+2} , e água destilada para completar o volume, aquecimento a $70^{\circ}C$ num banho termostático durante 20 minutos, resfriamento num banho de gelo por 5 minutos e leitura espectrofotométrica a 425 nm contra a água. A lei de Lambert — Beer foi obedecida num intervalo de concentração de $0,4 \times 10^{-2}$ a $2,8 \times 10^{-2}\mu g$ de Cu^{+2}/ml , o erro relativo foi em torno de 3,40% e o coeficiente de absortividade molar foi de $1,32 \times 10^6$ mol. $^{-1}$ l. cm^{-1} . Interferem na proporção de 1:1 $A1^{+3}$; 1:10 Bi^{+3} , Fe^{+3} , Mn^{+2} , Ce^{+4} , Pt^{+4} , Rh^{+3} , Co^{+2} , Re^{+7} , Ag^{+1} ; 1:100 Hg^{+2} , Cr^{+3} , Zn^{+2} , $C_2O_4^{-2}$ e 1:1000 Pb^{+2} , Cd^{+2} , Os^{+8} , Pd^{+2} , e Mo^{+6} . O método foi aplicado numa amostra de solo geoquímico que continha 53,24 ppm de Cu^{+2} , apresentando um desvio em torno de 2,92% em comparação com o método de absorção atômica.

INTRODUÇÃO

O fenol vermelho também conhecido como fenolsulfoneftaleína, p-HOC₆H₄(SO₃H-C₆H₄) C:C₆H₄:O (p), tem peso molecular 354,387. É um pó vermelho

muito estável no ar. E solúvel em água e álcool e muito solúvel em solução de hidróxidos alcalinos e carbonatos. E quase insolúvel em clorofórmio. 11

O fenol vermelho é um indicador ácido-base que pertence à classe das sulfoneftaleínas. As cores de suas soluções são estáveis por longo tempo se conservadas em soluções tampões. Apresenta duas nítidas mudanças de cor. A segunda mudança de coloração é mais usada e ocorre num pH entre 6,4 e 8,0 passando da cor amarela a vermelha. 7

Usou-se a reação de descoramento da solução amarela de fenol vermelho pH = 6,0, pelo peróxido de hidrogênio, catalisada pelo ion Cu⁺² para determinação do ion Cu⁺². Nesta reação, possivelmente o ion Cu⁺² oxida o fenol vermelho para um produto descolorido e se reduz para Cu⁺¹ e o peróxido de hidrogênio retorna o catalisador ao seu estado de oxidação anterior.³

MATERIAL E MÉTODOS

Na parte experimental foram utilizados:

- a) espectrofotômetro Espectromonn, modelo 204, utravioleta visível (Hungria);
- b) agitador com controle termostático acoplado, Ministat, tipo 607 (Hungria);
- c) Cubetas de vidro 1 cm de luz;
- d) aparelho medidor de pH Metronic;
- e) solução de fenol vermelho. O reagente fenol vermelho é solúvel em água na presença de hidróxido de sódio. Na preparação da solução, pesou-se 0,1 g do indicador e dissolveu-se em 3ml de NaOH 0,1 M, diluítu-se para 100 ml com água destilada. Em seguida, procedeu-se a uma diluição de 1:10 nos experimentos;
- f) solução padrão de CuSO₄.5H₂O. Preparou-se a solução estoque na concentração de 100/μg de Cu⁺²/Ml e padronizou-se segundo o método volumétrico do EDTA⁵, empregando-se a murexida como indicador. Usou-se nos experimentos solução de CuSO₄ contendo 0,1/ug Cu⁺²/ml;
- g) solução de peróxido de hidrogênio a 3%. Preparada a partir da solução de peróxido de hidrogênio a 30%. Devido a instabilidade do reagente H₂O₂, a solução diluída era sempre preparada na hora de ser utilizada.
- h) solução padrão de NaOH 0,1 M;
- i) solução de KH₂PO₄ 0,1 M. Preparada com sal livre de umidade e conservado a baixa temperatura em geladeira.

Espectro de absorção do fenol vermelho

Quando se mantém o pH de uma solução aquosa de fenol vermelho em pH =

6,0, com o sistema tamponante $KH_2PO_4/NaOH$, a solução amarela apresenta uma absorbância máxima num comprimento de onda de 425 nm.

De acordo com o gráfico 1, a reação de oxidação do fenol ver $\rm H_2O_2$, é uma reação de descoramento catalisada pelo ion $\rm Cu^{+2}$.

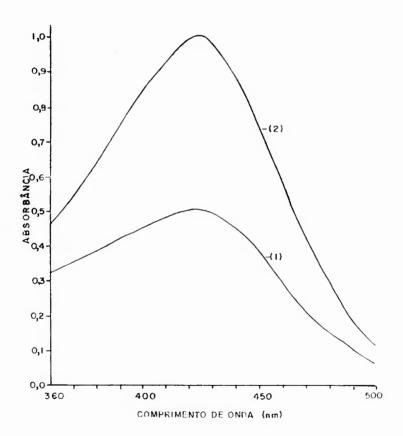


Gráfico 1 Espectro de absorção do fenol vermelho em pH = 6,0: (1): Reação catalizada; (2) Não catalizada

Curva de calibração

Antes de se proceder o levantamento da curva de calibração, foram selecionadas, experimentalmente, as condições que mais favorecessem a reação catalisada e que possibilitassem uma maior diferença entre branco e amostra.

No levantamento da curva de calibração da determinação do ion Cu⁺² procedeu-se da seguinte maneira: em balões aferidos de 25 ml coloca-se, sucessivamente, 1,25 ml de solução do tampão¹ KH₂PO₄/NaOH pH = 6,0, 5,6 ml de solução de fenol vermelho a 0,01%, 2,5 ml de solução de H₂O₂ a 3%, 1, 2, 3, 4, 5, 6, 6 e 7 ml de solução padrão de CuSO₄. 5H₂O contendo 0,1/µg de Cu⁺²/ml. Completou-se o volume dos balões com água destilada. Transferiu-se, de cada balão, uma alíquota de 10 ml para um tubo de ensaio, aquecendo-se durante 20 minutos num banho de água controlado termostaticamente para 70°C. A seguir, resfriou-se a solução num banho de gelo fundente durante 5 minutos e depois por igual período, foi colocado na temperatura ambiente, efetuando-se imediatamente as leituras espectrofotométricas contra a água no comprimento de onda de 425 nm.

Uma amostra em branco, isto é, que não continha o ion Cu⁺², foi preparada da mesma maneira e submetida às mesmas condições.

No estudo da curva de calibração considerou-se 7 pontos e cada ponto foi repetido 7 vezes, de acordo com a tabela 1. As leituras obtidas foram submetidas ao teste T, segundo tabela 2 e corrigidos segundo o tratamento estatístico da regressão linear conforme tabela 3.4

Tabela I -	Variação da a	bsorbáncia d	o fenol verme	lho em função da	concentração de Cu+2

PONTOS	CONCENTRAÇÃO DE Cu+2	DETERMINAÇÕES. (ABSORBÂNCIAS)							VALOR MÉDIO
	(µg/ml)	1	2	3	4	5	6	7	(y)
0	0	1,050	1,050	1,075	1,100	1,100	1,100	1,075	1,078
Ī	0,4 x 10 2	0,960	0,940	0,980	1,000	1,000	0,970	1,000	0,978
2	0.8 x 10-2	0,900	0.880	0,900	0,900	0,920	0,920	0,900	0,903
3	1.2 x 10 2	0,800	0,780	0,770	0,810	0,820	0.820	0,780	0,797
4	1.6 x 10-2	0,710	0,710	0,670	0,740	0,720	0,740	0,680	0,710
5	2.0 x 10 - 2	0,610	0,610	0.590	0,660	0,600	0,640	0,610	0,617
6	2.4 x 10 2	0,510	0.500	0,510	0,590	0,540	0,580	0,550	0,540
7	2.8 x 10 2	0,430	0,450	0,450	0,500	0.450	0,510	0,470	0.466

Tabela 2 — Aplicação do teste T aos pontos da curva de calibração da determinação do Cu^{+2} pelo fenol vermelho

PONTOS	Sı	Т1	Т7	T_{tabelado} $n = 7 \alpha = 0.05$
0	0.021	1,333	1,048	2,093
1	0,022	1,727	1,000	2,093
2	0,013	1,769	1,308	2,093
3	0,019	1,421	1,210	2,093
4	0,025	1,600	1,200	2,093
5	0,022	1,227	1,954	2,093
6	0,033	1,212	1,515	2,093
7	0.027	1,333	1,630	2,093

Tabela 3 — Tratamento estatístico dos pontos da curva de calibração da determinação de Cu+2 pelo método da regressão linear

PONTOS	x ₁ (x10 ⁻²)	y _i	x_i^2	x _i .y _i	y _i	DIFERENÇA EM RELAÇÃO AO BRANCO
0	0	1,078	0,00	0,0000	1,069	0,000
1	0,4	0,978	0,16	0,3912	0,981	0,088
2	0,8	0,903	0,64	0,7224	0,893	0,176
3	1,2	0,797	1,44	0,9564	0,805	0,264
4	1,6	0,710	2,56	1,1360	0,717	0,352
5	2,0	0,617	4,00	1,2340	0,629	0,440
6	2,4	0,540	5,76	1,2960	0,541	0,528
7	2,8	0,466	7,84	1,3048	0,453	0,616
Somatório	11,2	6,089	22,4	7,048		

Como se trata de uma reação de oxidação por descoramento, o gráfico 2 foi construído com base na diferença entre o valor médio da absorbância do branco e os valores médios das absorbâncias de cada ponto corrigidos, por tratamento estatístico.

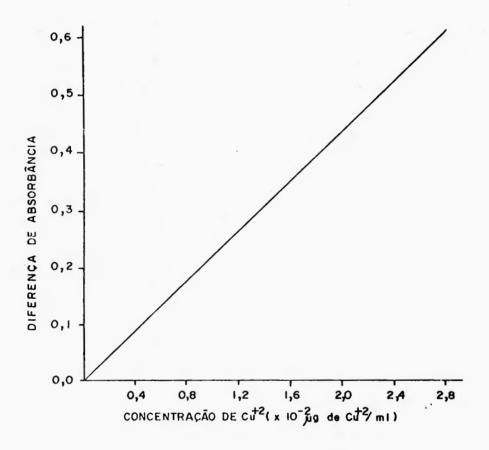


Gráfico 2 - Curva de calibração

Tabela 4 - Estudos dos interferentes do método

ION	SAL	PROPORÇÃO Cu ⁺² : íon interferente				TIPO DE INTERFERÊNCIA	
		1:1	1:10	1:100	1:100	(%)	
Pb ⁺²	Pb(NO ₃) ₂				+	Catálise	
Ba ⁺²	BaCl ₂ .2H ₂ O				•		
Hg ⁺²	HgCl ₂			+	+	Inibição	
Bi ⁺³	Bi(NO ₃).5H ₂ O		+	.+	+	Inibição	
Sr ⁺²	SrCl ₂ .6H ₂ O						
Ca ⁺²	Ca(NO ₃) ₂ .4H ₂ O						
Fe ⁺³	FeCl ₃ .6H ₂ O		+	+	+	Inibição e Catális	
Mn ⁺²	MnSO ₄ .H ₂ O		+	+	+	Catálise	
Mg ⁺²	MgSO ₄ .H ₂ O						
Li ⁺¹	LiCl						
Zn ⁺²	ZnSO ₄			+	+	Inibição	
Ce ⁺⁴	Ce(SO ₄) ₂		+	+	+	Inibição	
A1 ⁺³	Al ₂ (SO ₄)3.18H ₂ O	+		+	+	Inibição	
Cd ⁺²	CdCl ₂ .H ₂ O				+	Inibição	
Os ⁺⁸	OsO ₄				+	Inibição	
Pd ⁺²	PdCl ₂				+	Catálise	
Мо ⁺⁶	(NH ₄) ₆ MoO ₂₄ .4H ₂ O				+	Inibição	
Ni ⁺²	NiSO ₄ .H ₂ O						
NH 2 1	NH ₄ Cl						
Pt ⁺⁴	H ₂ PtCl ₆ .6H ₂ O		+	+	+	Inibição	
Rh ⁺³	RhCl ₃ .3H ₂ O		+	÷	+	Inibição	
Co ⁺²	CoCl ₂ .6H ₂ O		+	+	+	Catálise	
Re ⁺⁷	HReO ₄		+	+	+	Inibição	
Ag ⁺¹	AgNO ₃		+	+	+	Inibição	
Cr ⁺³	CrCl ₃ .6H ₂ O		-	+	+	Catálise	
co_3^{-2}	Na ₂ CO ₃			-	-		
SO ₄ -2	Na ₂ SO ₄						
$C_2O_4^{-2}$	Na ₂ C ₂ O ₄		+	+	+	Inibição	

Coeficiente de absortividade

O coeficiente de absorvidade molar² que é uma constante que permite avaliar a sensibilidade do método; foi calculado para o ponto médio da curva de calibração.

 $\Sigma = 1.32 \times 10^6 \text{ mol.} -11. \text{ cm} -1.$

Estudos dos interferentes

Para avaliar a seletividade do método, foi estudado o efeito de outros ions na determinação do ion Cu⁺² dentro das condições da curva de calibração. Ficou observado dois tipos de interferência: catálise e inibição, conforme tabela 4.

APLICAÇÃO DO MÉTODO

O método foi aplicado numa amostra de solo geoquímico cujo teor de cobre. determinado por absorção atômica foi de 53,25 ppm, efetuando-se a extração de Cu⁺² dessa amostra com ácido perclórico concentrado, segundo a técnica seguinte⁸:

2g da amostra foram tratadas com $20~\rm{ml}$ de $HC10_4$ concentrado, efetuandose a digestão da amostra durante algumas horas.

A seguir, efetuou-se a filtração à vácuo e lavou-se o resíduo com HC1 0,1 M, completou-se o volume para 100ml com água destilada. Transferiu-se uma alíquota de 50 ml para uma cápsula de procelana e evaporou-se até à secura. Dissolveu-se o resíduo sólido com a água destilada e transferiu-se para um becker de 100 m, efetuando-se a precipitação dos hidróxidos insolúveis com NH3 concentrado em excesso. Filtrou-se e lavou-se o precipitado com solução diluída de NH310, juntando-se o filtrado e a solução de lavagem. Para evitar a coprecipitação do Cu+2 com os hidróxidos insolúveis, dissolveu-se, o precipitado com H2SO4 diluído, repetindo-se as operações anteriores de precipitação, filtração e lavagem, juntando-se os filtrados e desprezando-se o precipitado. Acidificou-se o filtrado com HC1 concentrado, evaporou-se até à secura, diluí-se um pouco, com água destilada e tratou-se com HC1 0,3 M, precipitou-se, com solução de Na₂S a 2%¹⁰ a quente. Lavou-se o precipitado com solução de NH₄Cl 1% e dissolveu-se com solução quente de HNO3 a 20%. Evaporou-se a solução até à secura e tratou-se o resíduo com 0,5 ml de H₂SO₄ concentrado, diluí-se com água destilada e corrigiu-se o pH para 6,0 com solução de NaOH. Completou-se o volume para 250 ml, com água destilada. Tomou-se 1,5 ml adotando-se daí por diante, o mesmo procedimento da curva de calibração.

RESULTADOS

Procedeu-se a três determinações paralelas e a diferença de absorbância entre o branco e a amostra, foi lançada na curva de calibração, calculando-se por interpolação a concentração de Cu⁺² em/µg/ml.

Para efeito de comparação da exatidão do método calculou-se o teor de cobre pelo método da absorção atômica, ocorrendo um desvio médio de 2,92%.

Tabela 5 - Resultados comparativos na análise de solo geoquímico vquímico

ENSAIOS	DIFERENÇA DE ABSORBÂNCIA	TEOR DE COM ABSORÇÃO ATÔMICA	BRE EM ppm MÉTODO	DESVIO RELATIVO	
1 2	0,293 0,273	53,25 53,25	55,00	3,29%	
3	0,273	53,25	51,25 54,17	3,76% 1,72%	

CONCLUSÕES

A reação de oxidação do fenol vermelho pelo peróxido de hidrogênio é uma reação de descoramento cuja absorbância máxima, situada no comprimento de onde de 425nm, depende linearmente da concentração de Cu⁺², sendo utilizada na determinação de Cu⁺².

A lei de Lambert — Beer é obedecida num intervalo de concentração de 0.4×10^{-2} a 2.8×10^{-2} /ug de Cu⁺² ml, o erro relativo situou-se em torno de 3.40%, e o coeficiente de absortividade molar foi de 1.32×10^6 mol. $^{-1}$ l. cm $^{-1}$, demonstrando que o método é bastante sensível.

O método é seletivo, possuindo poucos interferenrentes e foi aplicado para determinar cobre numa amostra de solo geoquímico apresentando um desvio de 2,92% em comparação com o método de absorção atômica.

ABSTRACT

A new kinetic catalytic method of spectrophotometric determination of Cu⁺² was developed based on the reaction of oxidation by discoloration of red phenol with H₂O₂. The conditions that favored the reaction were: using 25 ml flasks, added 1,25ml of buffer solution KH₂PO₄/NaOH pH = 6.0, 2.5 ml of H₂O₂ at 3%, 5.6 ml of red phenol at 0.01%, aliquots of solution of Cu⁺², and distilled water to complete the volume. The solution was heated to 70°C in a thermostatic bath during 20 minutes, cooled in an ice bath for 5 minutos and a spectrophotometric reading was taken at 425 nmi against the water. The Lambert — Beer law followed in an interval of concentration of 0.4 x 10⁻² for 2.8 x 10⁻², ug of Cu⁺²/ml. The relative error was approximately 3.40% and molar extinction coefficient was 1.32 x 10⁶ mol. 1.cm⁻¹. Interfere in the proportion of 1:1 Al⁺³; 1:10 Bi⁺³, Fe⁺³, Mn⁺², Ce⁺⁴, Pt⁺⁴, Rh⁺³, Co⁺², Re⁺⁷, Ag⁺¹; 1:100 Hg⁺², Cr⁺³, Zn⁺², C₂O₄⁻²; and 1:1000 Pb⁺², Cd⁺², Os⁺⁸, Pd⁺² and Mo⁺⁶. The method was applied on sample of geochemical soil that contained 53.25 ppm of Cu⁺², presenting a difference of approximately 2.92% in comparison with atomic absorption method.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1 ASSUMPÇÃO, Rosely Maria Viegas & MORITA, Tokio. Reagentes gerais especiais. In: *Manual de soluções, reagentes e solventes*. São Paulo. E. Blucher, 1968, cap.4, p.274.
- 2 BABKO, Anatoly K. & PILIPENKO, Anatoly T. Absorption of light by coloured solutions. In: -. Photometric analysis. Moscow, Mir Publ., 1971. p.35-7.
- 3 BONTCHEV, P. R. Catalytic reactions II. Talanta, Elmsford, 17:499-513.1970.
- 4 ECKSCHLAGER, Karel. Errors measurements and results in chemical analysis. London, Van Nostrand, 1969. 151 p.
- 5 FLASCHK, H. A. EDTA titration an introdution to theory and practice. 2. ed. Oxford, Pergamon, 1967. p.85.
- 6 KOLTHOFF, Izaak Maurits & SANDELL, Ernest Buger. Theory of acidimentry and alkalimetry. In: -., Textbook of quantitative inorganic analysis. 3. ed. New York, Macmillan, 1952. p. 427-430.
- 7 LUCAS, Ramart. The structure of dayes on the basis of their absorption spectra. Phtaleins and sulfonephthaliens. *Chimie & Industrie*, Paris, 45:289-98, Mar. 1941.
- 8 SANDELL, Ernest Burges. Copper. In: -. Colorimetric determination fo traces of metals. 3. ed. London, Intercience, 1959. v.3, cap. 16, p. 461.
- 9 SMITH, Thomas Brooks. Buffer solutions and indicatiors. In: —, Analytical processes, a physical chemical interpretation. 2. ed. London, E. Arnold, 1957. cap. 8. p.441-52.
- 10 VOGEL, I. Arthur. Reacciones de los iones de metales o cations. In: –. Química analítica cualitativa. 4. ed. Buenos Aires, Kapelusz, 1959. cap. 3, p. 149-64.
- 11 WELCHER, Frank Johnson. Miscellanneous dyes. In—. Organic analytical reagents. 3. ed. New York, Van Nostrand, 1948. v.4, cap. 16, p. 546-7.