UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE BIOLOGIA BACHARELADO EM CIÊNCIAS BIOLÓGICAS

MARIA EDUARDA DE ALBUQUERQUE

INQUÉRITO COPROPARASITOLÓGICO E AÇÕES DE EDUCAÇÃO EM SAÚDE EM ESCOLAS DA REDE PÚBLICA DE TRÊS MUNICÍPIOS DE PERNAMBUCO

RECIFE, PERNAMBUCO

MARIA EDUARDA DE ALBUQUERQUE

INQUÉRITO COPROPARASITOLÓGICO E AÇÕES DE EDUCAÇÃO EM SAÚDE EM ESCOLAS DA REDE PÚBLICA DE TRÊS MUNICÍPIOS DE PERNAMBUCO

Trabalho de Conclusão de Curso apresentado ao curso de Bacharelado em Ciências Biológicas, da Universidade Federal Rural de Pernambuco, como requisito parcial para a obtenção do grau de Bacharel em Ciências Biológicas.

Orientadora: Prof^a. Dr^a. Jaqueline Bianque de Oliveira

RECIFE, PERNAMBUCO

INQUÉRITO COPROPARASITOLÓGICO E AÇÕES DE EDUCAÇÃO EM SAÚDE EM ESCOLAS DA REDE PÚBLICA DE TRÊS MUNICÍPIOS DE PERNAMBUCO

MARIA EDUARDA DE ALBUQUERQUE

Data de apresentação: 25 de janeiro de 2019

_

RECIFE, PERNAMBUCO

Suplente: Cristina Farias da Fonseca

2019

Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca Central, Recife-PE, Brasil

A345i Albuquerque, Maria Eduarda de

Inquérito coproparasitológico e ações de educação em saúde em escolas da rede pública de três municípios de Pernambuco / Maria Eduarda de Albuquerque. – 2019.

45 f. : il.

Orientador: Jaqueline Bianque de Oliveira.

Trabalho de Conclusão de Curso (Graduação) – Universidade Federal Rural de Pernambuco, Departamento de Biologia, Recife, BR-PE, 2019.

Inclui referências.

1. Doenças parasitárias 2. Helminto 3. Protozoário 4. Diagnóstico 5. Parasitologia I. Oliveira, Jaqueline Bianque de, orient. II. Título

CDD 574

AGRADECIMENTOS

Agradeço imensamente à Deus, por sempre ter guiado meus caminhos e por me dar forças para concluir mais uma jornada. A fé no Senhor, sem dúvidas, me ajudou a lutar até o fim.

Aos meus pais, Eduardo e Lucinha, por sempre se esforçarem ao máximo, abdicando de coisas para oferecer a mim e aos meus irmãos o melhor que eles podem, e por todo o apoio nesses últimos anos. Serei eternamente grata, sem vocês esse sonho não poderia ser possível.

À minha família, em especial meu avô José Honório e minha Nêne por desde criança terem me acolhido como neta e por todo amor e cuidado. E também meus tios Neco e Vivi, por me acolher em sua casa durante alguns dias da semana, e por todos os conselhos.

Ao meu amor, Henrique, meu principal incentivador e que jamais me negou apoio quando as crises de ansiedade tomaram conta de mim. Sem você eu não teria conseguido ir tão longe. Obrigada por tanto amor, apoio e calmaria.

Agradeço à UFRPE, que ao longo do curso me ofereceu um ambiente amoroso e cheio de oportunidades, pelo corpo docente que tive a oportunidade de conhecer e aprender, especialmente à minha orientadora, Jaqueline. Obrigada por exigir de mim muito mais do que eu imaginava ser capaz de fazer. Manifesto aqui minha gratidão por compartilhar sua sabedoria, o seu tempo e sua experiência.

Não poderia deixar de agradecer aos meus amigos, aqueles com os quais tive a oportunidade de conhecer no LAPAR: Ana Cláudia, Ana Elizabeth, Allyson, Sofia, Nicolás. Obrigada pelas conversas e por transformarem o inquérito mais divertido. Aos meus amigos que tive a alegria de conviver diariamente, obrigada por tornarem tudo mais leve e divertido, em especial: Karina, Rayza, Carol, Myller, Bruna e Ana, amo vocês!

Aos meus amigos do ônibus, que tornaram as idas e vindas mais alegres: Edu, Lauro, Pedro, Ricardinho e Rubens. Agradeço ao meu apoio diário, ao meu amigo, Luís, que sempre me ajuda nos diversos assuntos. Te amo, obrigada por ser essa pessoa pra mim! Agradeço a João Paulo, por permanecer na minha vida desde o ensino médio, e por ser uma válvula de escape nos momentos ruins.

Não poderia deixar de agradecer as minhas melhores amigas: Isabel, Rayanne, Ariane e Isabelly, por todas as conversas, conselhos e noitadas. Vocês são uma parte de mim, obrigada por serem quem são.

RESUMO

As enteroparasitoses representam um problema de saúde pública, uma vez que são endêmicas em muitas regiões do país. As infecções causadas por parasitos intestinais são consideradas indicadores socioeconômicos da população, podendo estar associada a vários fatores determinantes, como ausência ou precariedade de saneamento básico, alimentos e água contaminados e alguns fatores socioculturais. Nesse contexto, o objetivo deste estudo foi identificar os parasitos intestinais de escolares da rede pública de três municípios do estado e realizar ações de educação em saúde para diminuir a contaminação por estes parasitos. Foram analisadas 650 amostras de fezes de escolares, de ambos os sexos e com idade de 3 a 15 anos, do ensino fundamental da rede pública de ensino dos municípios de Camocim de São Félix, Salgadinho e Tupanatinga, as quais foram processadas pelos métodos de sedimentação espontânea e Kato Katz (Helm Teste Bio-Manguinhos). Das amostras analisadas, em 263 (40,46%) foram diagnosticados os seguintes parasitos intestinais: Ascaris lumbricoides (30,30%), Giardia duodenalis (4,61%), Entamoeba histolytica (2%), Hymenolepis nana (2%), Schistosoma mansoni (0,30%), Ancilostomídeos (0,30%), Enterobius vermicularis (0,30%) e Taenia sp. (0,15%). As prevalências nos municípios estudados foram: Salgadinho 94,81%, Camocim de São Félix 15,41% e Tupanatinga 12,79%. Na área urbana, a prevalência foi maior (41,97%). Com base nos resultados, foram realizadas ações de promoção à saúde, por meio da produção de materiais e atividades lúdicas visando a prevenção das enteroparasitoses. Para além de atividades de educação em saúde, são necessários investimentos para ampliar a cobertura de saneamento básico e, assim, diminuir o impacto dos parasitos intestinais na saúde da população.

Palavras-chave: Parasitoses, helmintos, protozoários, diagnóstico, controle.

ABSTRACT

Enteroparasites are a public health problem, since they are endemic in many regions of the country. Infections caused by intestinal parasites are considered socioeconomic indicators of the population and may be associated with several determinants, such as absence or precariousness of basic sanitation, contaminated food and water, and some sociocultural factors. In this context, the objective of this study was to identify the intestinal parasites of schoolchildren from the public schools of three municipalities of the state and to carry out health education actions to reduce contamination by these parasites. A total of 650 stool specimens of schoolchildren of both sexes and aged 3 to 15 years were analyzed from the public school system of the municipalities of Camocim de São Félix, Salgadinho and Tupanatinga, which were processed by sedimentation methods spontaneous and Kato Katz (Helm Test Bio-Manguinhos). Of the analyzed samples, the following intestinal parasites were diagnosed in 263 (40.46%): Ascaris lumbricoides (30,30%), Giardia duodenalis (4,61%), Entamoeba histolytica (2%), Hymenolepis nana, Schistosoma mansoni (0.30%), Hookworms (0.30%), Enterobius vermicularis (0.30%) and Taenia sp. (0.15%). The prevalences in the municipalities studied were: Salgadinho 94,81%, Camocim de São Félix 15,41% and Tupanatinga 12,79%. In the urban area, the prevalence was higher (41.97%). Based on the results, actions were carried out to promote health through the production of materials and recreational activities aimed at the prevention of enteroparasitoses. In addition to health education activities, investments are needed to expand the coverage of basic sanitation and, thus, reduce the impact of intestinal parasites on the health of the population.

Key words: Parasitosis, helminthes, protozoa, diagnostic, control.

LISTA DE TABELAS

Tabela 1. Dados de sexo e idade de escolares dos municípios de Camocim de S	São
Félix, Salgadinho e Tupanatinga que participaram do inquérito coproparasitológico	on c
período de agosto a dezembro de 2016	32

LISTA DE FIGURAS

Figura 1 – Ciclo biológico de <i>Giardia duodenalis</i>	16
Figura 2 – Ciclo biológico de <i>Entamoeba histolytica</i>	. 17
Figura 3 – Ciclo biológico de Ascaris lumbricoides	19
Figura 4 – Ciclo biológico de <i>Trichuris trichiura</i>	20
Figura 5 – Ciclo biológico de <i>Ancylostoma sp</i>	21
Figura 6 – Ciclo biológico de <i>Enterobius vermicularis</i>	22
Figura 7 – Ciclo biológico do <i>Schistosoma mansoni</i>	23
Figura 8 – Ciclo biológico de <i>Taenia sp</i>	25
Figura 9 – Ciclo biológico de <i>Hymenolepis nana</i>	26
Figura 10 – Pote coletor identificado	.30
Figura 11 – Processamento das amostras no Laboratório de Parasitologia (LAPAF	₹)
da UFRPE	.30
Figura 12 – Técnica de Kato Katz	.31
Figura 13 – Palestra realizada paraos escolares.	.33
Figura 14 – Folder criado pelos escolares	.34
Figura 15 – Escolares com pinturas realizadas por eles	.34
Figura 16 – Jogo de pergunta e respostas	. 35
Figura 17 – Banner utilizados nas escolas, apresentando as principais medidas de)
controle das geohelmintíases	35

SUMÁRIO

1	INTRODUÇÃO	. 11
2	REVISÃO DE LITERATURA	. 13
	2.1 O contexto de ocorrência das infecções por parasitos intestinais	. 13
	2.1.1 Doenças Negligenciadas	. 14
	2.1.2 Enteroparasitoses	. 14
	2.1.2.1 Giardia duodenalis	. 15
	2.1.2.2 Entamoeba histolytica	. 16
	2.1.2.3 Geohelmintos	. 17
	2.1.2.4 Enterobius vermicularis	. 21
	2.1.2.6 <i>Taenia</i> sp	. 24
	2.1.2.7 Hymenolepis nana	. 25
	2.2 Educação em saúde para prevenção das parasitoses	. 26
3	OBJETIVOS	. 28
	3.1 Objetivo Geral	. 28
	3.2 Objetivos Específicos	. 28
4	MATERIAL E MÉTODOS	. 29
	4.1 Área de estudo	. 29
	4.2 Amostras fecais	. 29
	4.3 Ações de educação em saúde	. 31
5	RESULTADOS	. 32
6	DISCUSSÃO	. 36
7	CONCLUSÕES	. 39
Q	REFERÊNCIAS RIBI IOGRÁFICAS	40

1 INTRODUÇÃO

As parasitoses intestinais (também denominadas de geo-helmintíases, enteroparasitoses e verminoses) são um importante problema de saúde pública no Brasil e no mundo e que são endêmicas em países subdesenvolvidos e em desenvolvimento, onde as populações desfavorecidas tanto socialmente e economicamente sejam afetadas (DE ANDRADE et al., 2010).

As enteroparasitoses provocam sérios prejuízos à saúde do indivíduo parasitado, especialmente em cuja imunidade ainda se encontra ineficaz contra os parasitos. O principal dano provocado pelas parasitoses intestinais em crianças em idade escolar é a interferência no desenvolvimento físico e cognitivo, dificultando assim, o começo do aprendizado (MELO et al., 2010).

Segundo Neves (2005a), "a transmissão e a manutenção de uma doença na população humana são resultantes do processo interativo entre o agente, o meio ambiente e o hospedeiro humano". Outro fator que favorece a disseminação da doença em países em desenvolvimento são as condições climáticas. Neves (2005b) afirma que as parasitoses intestinais têm um "importante papel nas taxas de infecção, pois em geral, a prevalência é baixa em regiões áridas e relativamente alta onde o clima é úmido e quente, condição ideal para a sobrevivência e o embrionamento dos ovos".

Devido à diversidade quantidade de fatores que estão relacionados com a ocorrência de parasitoses, alguns dos quais são difíceis de solucionar, elas se mantêm como problema de saúde pública no Brasil, mesmo com o avanço na realização de tratamentos e prevenção (FONSECA et al., 2010).

Populações que estão sob precárias condições de saneamento básico, água, moradia e também da falta de hábitos de higiene estão mais propensos às infecções por enteroparasitos (DE ANDRADE et al., 2010).

Em crianças até seis anos há um predomínio importante de enteroparasitoses. Tendo isso como base, destaca-se a importância da prevenção primária por intermédio da melhoria das condições socioeconômicas, pelo comprometimento do poder público (SILVA et al., 2015). Segundo Neves (2005a), prevenção primária são medidas que procuram impedir que o indivíduo adoeça, controlando os fatores de

risco. Essas medidas primordiais são: saneamento ambiental o que inclui o tratamento de água, esgoto e coleta de lixo, educação, alimentação adequada etc. As medidas de prevenção primárias consideradas específicas são ações de controle de vetores, por suspenderem os ciclos biológicos dos agentes infecciosos na natureza. A prevenção primária pode envolver duas estratégias: ser apontada para populações com finalidade de uma diminuição média do risco de adoecer ou então ser dirigida para indivíduos que estejam sujeitos a maior exposição a um fator de risco (NEVES, 2005).

As autoridades governamentais devem investir em profilaxia, mediante a conscientização dos indivíduos para assumirem adequados hábitos de higiene e no aumento da cobertura do saneamento básico para que assim haja uma diminuição da prevalência das enteroparasitoses nas comunidades carentes, principalmente em crianças em idade escolar (MELO et al., 2010).

Um estudo realizado em Salvador-Bahia, utilizando crianças em idade escolar, demonstrou que 66,1% encontravam-se infectadas (PRADO et al., 2001). Em outro estudo realizado em Governador Mangabeira-BA mostrou que dentre as parasitoses em crianças, as infecções causadas por protozoários foram mais prevalentes (47%) do que as causadas por helmintos (3%) (NEVES, 2018).

O Ministério da Saúde, por meio da Secretaria de Vigilância em Saúde (SVS), promove anualmente a "Campanha Nacional das Geo-helmintíases" em escolas públicas, tendo como público-alvo os escolares da faixa etária de 5 a 14 anos. Em Pernambuco, foram selecionados 140 municípios prioritários, considerando os critérios epidemiológicos e sócio-demográficos de risco. Ao final, 164 municípios aderiram e finalizaram a campanha em 2015, com um total 3095 escolas e aproximadamente 553 mil escolares, onde 84.3% foram tratados com albendazol.

Nesse contexto, o objetivo do presente estudo foi identificar os parasitos intestinais de escolares da rede pública de ensino de Pernambuco e realizar ações de educação em saúde para prevenção das geo-helmintíases.

2 REVISÃO DE LITERATURA

2.1 O contexto de ocorrência das infecções por parasitos intestinais

Cerca de dois bilhões de pessoas estão atualmente infectadas com parasitos intestinais, com maior relevância em países subdesenvolvidos ou em desenvolvimento, e a qualidade de vida é um fator determinante na transmissão desses parasitos (MISHRA et al., 2014).

As doenças parasitárias, cujos agentes etiológicos podem ser helmintos e/ou protozoários, constituem-se uma das maiores causas de morbidade e mortalidade em muitos países localizados nos trópicos, sendo endêmicas nos países em desenvolvimento (RIBEIRO et al., 2013).

No Brasil, em decorrência da sua diversidade geográfica e da existência de diferentes classes socioeconômicas e culturais na população de uma mesma cidade, é importante que se conheça a prevalência de enteroparasitoses e as principais espécies encontradas em cada região, para que possam ser estabelecidas as medidas curativas e profiláticas necessárias para a redução significativa do número de pessoas infectadas (FONSECA et al., 2010).

A principal forma de transmissão é a via fecal-oral, relacionadas com locais com falta de condições mínimas de saneamento básico e condições sanitárias precárias, o que favorece o aumento da disseminação de ovos, larvas e cistos dos parasitos (MAMUS et al., 2008). Devido à transmissão, ligada a mecanismos de infecção passivo oral e/ou ativo cutâneo, bem como a outros fatores, os enteroparasitos têm distribuição ampla, porém, com variação na prevalência nas diferentes regiões, tanto em ambientes rurais, como nos urbanos dos países em desenvolvimento (GOMES et al., 2010).

Embora tenham ocorrido avanços no tratamento e no diagnóstico nos últimos anos, as enteroparasitoses continuam sendo um significante problema de saúde pública, principalmente em países em desenvolvimento. Além disso, as ações de controle ainda apresentam restrições frente à infraestrutura de saneamento básico, bem como pela falta de projetos educacionais (BELLOTO et al., 2011).

Mesmo a infecção por parasitos intestinais não esteja associada a distúrbios gastrointestinais, a presença destes agentes pode conduzir a novos casos, visto que

os indivíduos parasitados podem funcionar como portadores e, portanto, fonte de contaminação (BELLOTO et al., 2011).

2.1.1 Doenças Negligenciadas

Doenças negligenciadas são um conjunto de doenças causadas por agentes infecto-parasitários que causam danos físico, cognitivo e socioeconômico em crianças e adolescentes moradores principalmente de comunidades de baixa renda (PERNAMBUCO, 2011), onde há uma precariedade ou inexistência do saneamento básico e associação com outros problemas de saúde.

As doenças negligenciadas, correspondem a um grupo de doenças infecciosas que afeta as populações mais pobres e vulneráveis e contribui para a perpetuação dos ciclos de pobreza, desigualdade e exclusão social, em razão principalmente de seu impacto na saúde infantil (HOTEZ, 2007).

A OMS considera como problema de saúde pública um conjunto de 17 doenças negligenciadas, distribuídas em 148 países (BRASIL, 2011). Nove dessas doenças negligenciadas ocorrem o Brasil.

O estado de Pernambuco tem estratégias de intervenção para a redução e eliminação das seguintes doenças negligenciadas: Doença de Chagas, Leishmanioses, Hanseníase, Esquistossomose Mansoni, Tracoma, Filariose Linfática, Geohelmintíases e Tuberculose (PERNAMBUCO, 2015).

2.1.2 Enteroparasitoses

Enteroparasitoses são doenças parasitárias, cujos agentes etiológicos podem ser helmintos e/ou protozoários, e que constituem-se uma das maiores causas de morbidade e mortalidade em muitos países localizados tropicais, sendo endêmicas nos países em desenvolvimento (RIBEIRO et al., 2013).

As parasitoses intestinais constituem um tipo de endoparasitismo. Os parasitos que vivem no trato gastrintestinal do homem pertencem aos filos Protozoa, Platyhelminthes, Nematoda e Acantocephala, e levando em consideração as condições de vida, moradia e saneamento básico são, em grande parte, determinantes da transmissão de tais parasitos. Alguns parasitos como *Entamoeba histolytica*, *Giardia duodenalis*, *Hymenolepis nana*, *Taenia solium*, *T. saginata*, *Ascaris lumbricoides*, *Trichuris trichiura* e *Enterobius vermicularis*, são transmitidos pela água

ou alimentos contaminados. Outros, como *Ancylostoma duodenale*, *Necator americanus* e *Strongyloides stercoralis*, são transmitidos por larvas presentes no solo (NEVES, 2005).

2.1.2.1 Giardia duodenalis

Giardia duodenalis, também conhecida como G. intestinalis e G. lamblia, é um protozoário flagelado que parasita o trato intestinal sendo causador da giardíase. Além disso, é uma das infecções parasitárias mais comuns do mundo que atinge tanto homens quanto mulheres, porém, sendo encontrado, com mais frequência em crianças com faixa etária de 0 a 10 anos, esse parasita pode ser encontrado na natureza através de duas formas, podendo ser cistos ou trofozoítos (CDC, 2019).

Os cistos são formas resistentes e são responsáveis pela transmissão da giardíase. Ambos, os cistos e trofozoítos, podem ser encontrados nas fezes. Os cistos são resistentes e podem sobreviver por vários meses em água fria. A infecção ocorre pela ingestão de cistos em água contaminada, alimentos ou pela via fecal-oral (mãos ou fomites) (Figura 1). No estômago, após o excistamento, os trofozoítos liberados (cada cisto produz dois trofozoítos) irão se multiplicam por fissão binária longitudinal, permanecendo no lúmen do intestino delgado proximal, onde podem estar livres ou presos à mucosa por um disco de sucção ventral. O encistamento ocorre quando os parasitos transitam em direção ao cólon, e são excretados nas fezes. Como os cistos são infectantes quando saem nas fezes, a transmissão de pessoa para pessoa é possível (CDC, 2019).

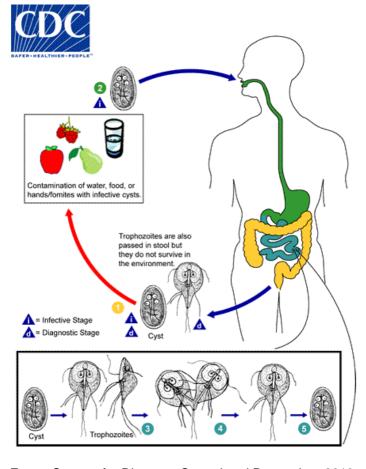


Figura 1 – Ciclo biológico de Giardia duodenalis.

Fonte: Centers for Diseases Control and Prevention, 2019.

2.1.2.2 Entamoeba histolytica

Atualmente, são reconhecidas como causadoras de infecção frequente duas espécies: *E. histolytica* e *E. dispar,* conhecidas como causadoras da "forma invasiva" e "não invasiva" da doença, respectivamente (CDC, 2019). Estas duas espécies são morfologicamente indistinguíveis, a menos que sejam observadas hemácias no citoplasma de *E. histolytica*.

Entamoeba histolytica é conhecida como uma ameba patogênica, em infecções intestinais e extraintestinais. A transmissão é através da ingestão de cistos, em geral, veiculados por água ou alimentos contaminados (CDC, 2019).

Os cistos são encontrados em fezes, enquanto os trofozoítos são encontrados em fezes diarreicas. A infecção por *E. histolytica* ocorre pela ingestão de cistos em alimentos contaminados, água ou mãos. O encistamento ocorre no intestino delgado e trofozoítos liberados migram para o intestino grosso onde se multiplicam por fissão binária e posteriormente se encistam. Em muitos casos, os trofozoítos

permanecem confinados ao lúmen intestinal de indivíduos que são portadores assintomáticos, passando os cistos em suas fezes. Em alguns pacientes, os trofozoítos invadem a mucosa intestinal e, através da corrente sanguínea, atingem sítios extraintestinais, como fígado, cérebro e pulmões, resultando em manifestações patológicas graves.

Figura 2 – Ciclo biológico de Entamoeba histolytica.

Fonte: Centers for Diseases Control and Prevention, 2019.

2.1.2.3 Geohelmintos

As geohelmintíases constituem um grupo de doenças parasitárias que causam infecção em humanos por meio da transmissão de ovos ou larvas, que se desenvolvem no solo quente e úmido, característicos de países tropicais e subtropicais do mundo (ASAOLU & OFOEZIE, 2003; BETHONY et al., 2006; DOLD & HOLLAND, 2011; OMS, 2001).

O hábito de defecar diretamente no solo, comum nas zonas rurais, onde instalações sanitárias são menos frequentes ou inadequadas, em banheiros onde a

presença de saneamento básico é precária ou inexistente, leva à intensa contaminação no peridomicílio. A inexistência ou a precariedade no saneamento básico também resulta na intensa contaminação ambiental (ASAOLU & OFOEZIE, 2003; DOLD & HOLLAND, 2011).

O ministério da Saúde realiza o tratamento preventivo em crianças da faixa etária de 5-14 anos, um grupo de risco para as infecções por geohelmintos, visando o fortalecimento das ações de vigilância das geohelmintíases em municípios endêmicos, com prevalência acima de 20% (BRASIL, 2013). No entanto, apesar dos métodos de prevenção e os tratamentos serem conhecidos e eficazes, as geohelmintíases são ainda classificadas como doenças negligenciadas (DOLD & HOLLAND, 2011; OMS, 2001).

Dentre as geohelmintíases de maior prevalência no mundo está a Ascaridíase, causada pelo nematódeo *Ascaris lumbricoides*, parasito do intestino delgado. A maior parte das infecções causadas por essa espécie envolve um número pequeno de parasitos adultos e é tida como assintomática, sendo diagnosticada por meio de exames coproparasitológicos ou através da eliminação de parasitos adultos pelo hospedeiro. A manifestação dos sintomas depende da quantidade de parasitos adultos que estão abrigados pelo indivíduo; infecções maciças podem resultar em bloqueio mecânico do intestino delgado, principalmente em crianças, podendo causar ruptura das alças intestinais causando assim a mortalidade do indivíduo parasitado (SILVA et al., 2011).

A ascaridíase é transmitida por meio da ingestão de água e/ou alimentos contaminados com os ovos larvados do parasito. A penetração da larva do parasito na pele do hospedeiro é a principal forma de transmissão da ancilostomíase (CAMILLO-COURA, 1974; ASAOLU & OFOEZIE, 2003).

No intestino delgado, os parasitos adultos podem produzir aproximadamente 200.000 ovos por dia, os quais são excretados nas fezes dos indivíduos parasitados. Os ovos férteis embrionam e tornam-se infectantess após 18 dias a várias semanas, dependendo das condições ambientais (óptimo: solo húmido, quente e sombreado). Após serem ingeridos, as larvas eclodem, invadem a mucosa intestinal e são transportadas por via hematogênica até os pulmões, onde sobem pela árvore

brônquica até a faringe e são deglutidas até atingir o intestino delgado, onde ocorre o desenvolvimento dos adultos(CDC, 2019).

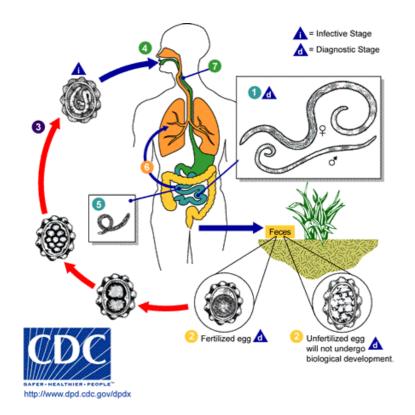


Figura 3 – Ciclo biológico de Ascaris lumbricoides.

Fonte: Centers for Diseases Control and Prevention, 2019.

Trichuris trichiura é um parasito que habita o intestino grosso do ser humano e, na maior parte dos casos, a infecção acontece silenciosamente. No entanto, indivíduos que se infectam com elevado número de parasitos podem apresentar sintomatologia intestinal, mas a ocorrência de óbitos é considerada baixa (SANTANA et al., 2014). Pode ocorrer associação entre *A. lumbricoides, T. trichiura*, uma vez que ambas espécies possuem ciclos de vida similares, com fêmeas que eliminam grande quantidade de ovos com grande resistência dos mesmos no meio ambiente, o que pode determinar a manutenção da transmissão desses geohelmintos (BASSO et al., 2008).

Os ovos embrionados são eliminados com as fezes (Figura 4). No solo, os ovos embrionam e tornam-se infectantes em 15 a 30 dias. Após a ingestão (mãos contaminadas no solo ou alimentos), os ovos eclodem no intestino delgado e liberam larvas que amadurecem e se estabelecem como adultos no cólon. Os parasitos adultos vivem no ceco e no cólon ascendente (CDC, 2019).

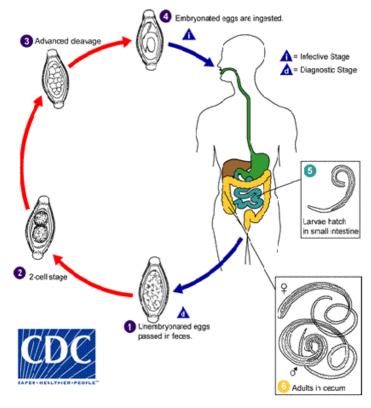


Figura 4 – Ciclo biológico de *Trichuris trichiura*.

Fonte: Centro de Disease Control and Prevention, 2019

A ancilostomíase decorre do parasitismo no intestino delgado pelas espécies *Ancylostoma duodenale* e *Necator americanus* (CHIEFFI & FERREIRA, 2008). O parasitismo geralmente é assintomático; entretanto, pacientes com infecções maciças podem desenvolver anemia, principalmente quando há deficiência alimentar e os sintomas podem incluir desde manifestações pulmonares inespecíficas, expectoração e febre, e o acometimento intestinal pode determinar dor epigástrica, náuseas, vômitos e diarreia, às vezes sanguinolenta, ou constipação (ANDRADE et al., 2010).

Os ovos são liberados nas fezes e, sob condições favoráveis (umidade, calor, sombra), as larvas eclodem e, após 5 a 10 dias, tornam-se infectantes (L3). Essas larvas infectantes podem sobreviver de 3 a 4 semanas em condições ambientais favoráveis. Em contato com o hospedeiro humano, as larvas penetram na pele e são transportadas através dos vasos sanguíneos para o coração e depois para os pulmões, de onde sobem pela árvore brônquica até a faringe e são deglutidos. As larvas atingem o intestino delgado, onde residem os adultos (Figura 5). Os parasitos adultos são hematófagos (CDC, 2019).

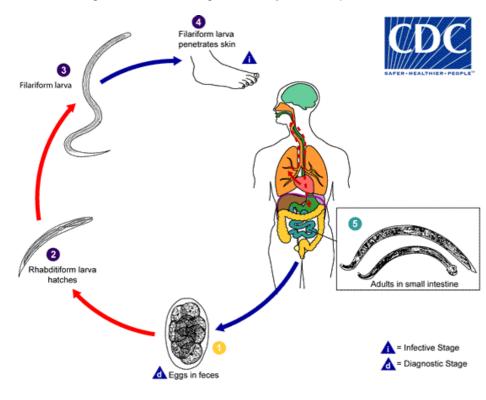


Figura 5 – Ciclo biológico de Ancylostoma sp.

Fonte: Centers for Disease Control and Prevention, 2019.

2.1.2.4 Enterobius vermicularis

Este nematódeo parasita o intestino grosso, com elevada frequência e vasta distribuição geográfica, tanto em países tropicais como em países de clima temperado, inclusive nos países ricos e com níveis de saneamento considerados adequados (CAMPOS et al., 2011).

A infecção nos humanos ocorre por vias direta e indireta. A via direta se dá pela ingestão e/ou inalação dos ovos de *E. vermicularis* (TU-BIN et al., 2012), e a via indireta ocorre por meio de fômites, como roupas íntimas compartilhadas entre os indivíduos, ausência da higienização das roupas de cama, vasos sanitários mal higienizados, unhas e mãos sujas (WARUENNE et al., 2007).

Os sintomas, quando presentes, são leves, geralmente manifesta-se pelo prurido anal ou perianal causado pela presença do parasito nessa região (CAMPOS et al., 2011). A infecção por *E. vermicularis* só causa uma morbidade mais severa quando o parasito se encontra em localizações ectópicas, isso ocorre geralmente em indivíduos com a integridade das paredes intestinais comprometidas, de onde o helminto migra para sítios extracolônicos (CAMPOS et al., 2011).

As fêmeas grávidas migram noturnamente para fora do ânus e ovipositam enquanto rastejam na pele da região perianal. Os ovos são depositados na região perianal e perineal do sindivíduo parasitados (Figura 6). As larvas contidas no interior dos ovos se desenvolvem e os ovos tornam-se infectantes em 4 a 6 horas. A autoinfecção ocorre pela transferência de ovos infectantes para a boca com as mãos contaminadas. A transmissão pessoa a pessoa também pode ocorrer por meio do manuseio de roupas ou roupas de cama contaminadas. Após a ingestão de ovos infectantes, as larvas eclodem no intestino delgado e os adultos se estabelecem no cólon(CDC, 2019).

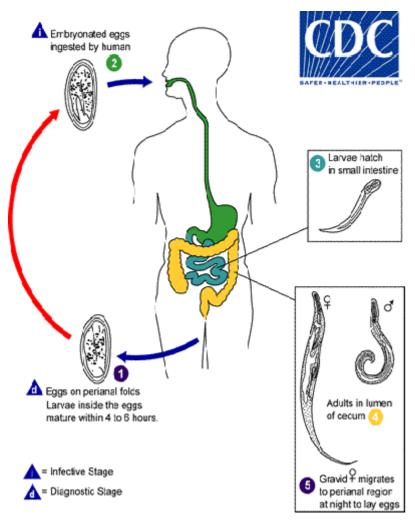


Figura 6 – Ciclo biológico de *Enterobius vermicularis*.

Fonte: Centers for desease control and prevention, 2019

2.1.2.5 Schistosoma mansoni

Schistossoma mansoni é um trematódeo causador da Esquistossomose Mansoni, que tem no seu ciclo biológico o envolvimento de caramujos do gênero *Biomphalaria*. Essa doença é conhecida popularmente como "doença do caramujo" e/ou "barriga d'água", que cursa com um quadro agudo ou crônico, muitas vezes com poucos sintomas ou assintomático, mas pode também se manifestar com formas mais graves, com o óbito do hospedeiro (Rocha et al., 2016).

O ciclo se inicia em um caramujo aquático nos quais o parasito, na foram de esporocisto, se multiplica assexuadamente e posteriormente abandona o caramujo na foram de cercaria. Na água, as cercárias entram pela pele ou mucosas e na forma de esquistossômulos, por via hematogênica chegam à veia porta e veias mesentéricas onde os adultos se desenvolvem. Após o acasalamento, ocorre a postura dos ovos, os quais migram para o intestino e são excretados nas fezes (Figura 7).

= Infective Stage A = Diagnostic Stage 6 Cercariae released by snail into water and free-swimming Sporocysts in snail 4 (successive generations) Cercariae lose tails during penetration and become schistosomulae skin 6 Circulation Miracidia penetrate snail tissue Migrate to portal blood in liver and mature into adults 🔑 Eggs hatch releasing miracidia Paired adult worms migrate to: mesenteric venules of bowel/rectum (laying eggs that circulate to the A liver and shed in stools) S. mansoni S. haematobium C venous plexus of bladder

Figura 7 – Ciclo biológico de Schistosoma mansoni.

Fonte: Centers for Disease Control and Prevention, 2019.

2.1.2.6 *Taenia* sp.

A teníase é causada por cestódeos adultos das espécies *Taenia solium* e *T. saginata* que parasitam o intestino delgado de humanos, que se infectam pela ingestão de carne suína ou bovina, respectivamente, contendo a forma larvar, denominado cisticerco (NIETO, 2015). A cisticercose humana é caracterizada pela presença das larvas da *T. solium* instaladas acidentalmente em tecidos e a transmissão ocorre devido à ingestão de ovos viáveis procedentes de alimentos e mãos contaminados por ovos (NIETO, 2015).

A teníase determina sintomas leves, dentre eles: dor abdominal, diarreia ou prisão de ventre, perda de peso, dor de cabeça, anemia, cansaço (OLSON et al., 2002; GALÁN-PUCHADES & FUENTES, 2013). A cisticercose é percebida quando o cisticerco se instala no sistema nervoso central, o que pode provocar distúrbios neurológicos, denominando assim de neurocisticercose, essa infecção é capaz de causar sérios agravos, como epilepsia, convulsões, cefaleia, desmaios e até mesmo em casos não controlados a morte do indivíduo (NIETO, 2015).

Ovos ou proglotes grávidas são excretados ns fezes dos indivíduos parasitados (Figura 8). Bovinos (*T. saginata*) e suínos (*T. solium*) são infectados pela ingestão de vegetação contaminada com os ovos ou proglotes gravidos. No intestino do animal, as oncosferas eclodem, invadem a parede intestinal e migram para os músculos, onde se desenvolvem em cisticercos. Um cisticerco pode sobreviver durante vários anos no animal. A infecção dos hospedeiros definitivos se dá pela ingestão de carne infectada crua ou mal cozida. No intestino humano, o cisticerco se desenvolve por 2 meses em uma tênia adulta, que pode sobreviver por anos. A *T. saginata* pode produzir até 100.000 ovos e a *T. solium* pode produzir até 50.000 ovos por proglótide (CDC, 2019).

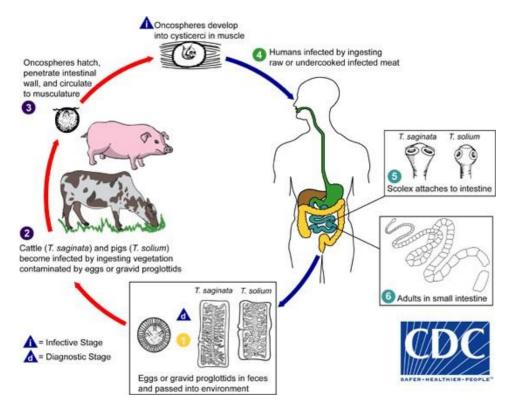


Figura 8 – Ciclo biológico de *Taenia solium* e *T. saginata*.

Fonte: Centers for Disease Control and Prevention, 2019.

2.1.2.7 Hymenolepis nana

Este é um cestódeo de distribuição praticamente cosmopolita, mais frequente em regiões tropicais. As crianças constituem o grupo que com mais frequência é parasitado (AMARAL& AVILA PIRES, 1952). A transmissão ocorre de pessoa a pessoa, geralmente sem a presença de hospedeiro intermediário, através da ingestão de ovos eliminados nas fezes (OBERMEIER, J. & FROHBERG, H, 1977).

Ovos de *H.s nana* são infectantes quando saem nas fezes (Figura 9) e não sobrevivem por muito tempo no ambiente. Quando os ovos são ingeridos por um hospedeiro intermediário artrópode (várias espécies de besouros e pulgas podem servir como hospedeiros intermediários), eles se desenvolvem em cisticercóides, que podem infectar humanos ou roedores após a ingestão e se transformar em adultos no intestino delgado. Uma variante morfologicamente idêntica, *H. nana* var. *fraterna*, parasita roedores e utiliza artrópodes como hospedeiros intermediários. Quando os ovos são ingeridos (em alimentos ou água contaminados ou de mãos contaminadas com fezes), as oncosferas contidas nos ovos são liberadas. As oncosferas (larvas de hexacanto) penetram nas vilosidades intestinais e desenvolvem-se em larvas

cisticercóides, que posteriormente retornam ao lúmen intestinal, evaginam os seus escólices, fixam-se à mucosa intestinal e desenvolvem-se em adultos no intestino delgado, produzindo proglótides gravídicos. Um modo alternativo de infecção consiste na autoinfecção interna a partir da liberação do embrião hexacanto do ovo, penetrando nas vilosidades e continuando o ciclo sem passar para o ambiente (CDC, 2019).

= Infective Stage a = Diagnostic Stage Oncosphere hatches Cysticercoid develops in Humans and rodents are intestinal villus infected when they ingest cysticercoid-infected arthropods. Cysticercoid develops in Autoinfection can occur if insect eggs remain in the intestine. The eggs then release the Scole hexacanth embryo, which Embryonated egg penetrates the intestinal villus ingested by humans continuing the cycle. from contaminated food, water, or hands Adult in ileal portion of Egg ingested small intestine by insect CARL STREET Eggs can be released through the genital atrium of the gravid proglottids. Gravid proglottids can also disintegrate releasing eggs that are passed in stools. Embryonated egg in feces

Figura 9- Ciclo biológico de Hymenolepis nana.

Fonte: Centers for desease control and prevention, 2019

O exame coproparasitológico é de suma importância para a identificação etiológica e melhor escolha dos agentes terapêuticos que poderão ser utilizados. Assim, é necessário identificar, tratar e prevenir as infecções parasitárias, com objetivo de evitar possíveis epidemias e formação de novas áreas endêmicas (MAGALHÃES et al., 2013). Além disso, as medidas preventivas que são utilizadas para o controle das enteroparasitoses contribuem para a diminuição dos gastos anuais com o tratamento específico (MAGALHÃES et al., 2013).

2.2 Educação em saúde para prevenção das parasitoses

Crianças em idade escolar são as mais atingidas e prejudicadas pelas doenças parasitárias (MELO et al., 2010). A introdução das mulheres no mercado de trabalho

tornou as creches ou pré-escolas muito procuradas, sendo esse o primeiro ambiente externo frequentado pelas crianças, tornando-se, por conseguinte, um ambiente favorável às infecções parasitárias (COSTA et al., 2015).

Já foi constatado que a ocorrência das enteroparasitoses em estudantes é um dos indicadores apropriados para classificar a conjuntura socioeconômica de uma sociedade, mas sugere-se que essas infecções devam ser consideradas alvos de controle, com o tratamento das crianças parasitadas e com mudanças nas condições ambientais nestas áreas negligenciadas, para que haja melhoria da qualidade de vida dos habitantes das comunidades onde estas escolas estão inseridas (Rodrigues et al., 2013).

A educação em saúde viabiliza o entendimento de medidas acerca da prevenção das parasitoses intestinais, fazendo com que essas medidas sejam utilizadas pelos indivíduos no seu cotidiano para se tornarem mais saudáveis e tenham, consequentemente, um aumento na qualidade de vida (GOMES et al., 2016). A educação higiênico-sanitária deveria ser pauta das aulas em escolas, principalmente das regiões mais pobres, com o intuito de que as crianças evitem a contaminação e as possíveis reincidências das parasitoses. Deste modo, a educação deve também ser estendida para os pais dos alunos, para que os mesmos possam agir corretamente, servindo os pais como "espelhos" para seus filhos, tornado qualquer ato de higiene um hábito familiar (MELO et al., 2010).

Portanto, a educação em saúde representa uma das ferramentas indispensáveis ao trabalho do profissional no controle de endemias, e deve ampliar seu enfoque à criança, pois, ao se trabalhar os indivíduos nessa fase da vida aumentam-se as possibilidades desses se tornarem, na idade adulta, pessoas com uma maior qualidade de vida, com consciência crítica e com poder sobre as questões de saúde (BARBOSA et al., 2009).

3 OBJETIVOS

3.1 Objetivo Geral

Realizar um inquérito coproparasitológico em escolares da rede pública de três municípios pernambucanos e realizar ações de educação em saúde para prevenção das parasitoses intestinais.

3.2 Objetivos Específicos

- 1. Determinar a prevalência das infecções por parasitos intestinais nos municípios estudados;
- 2. Identificar os parasitos mais prevalentes nos escolares estudados;
- 3. Determinar a prevalência das infecções por parasitos intestinais nas áreas urbanas e rurais dos municípios estudados;
- 4. Identificar os parasitos mais prevalentes nas áreas urbanas e rurais dos municípios estudados;
- 5. Realizar atividades de educação em saúde voltadas para a prevenção das parasitoses intestinais.

4 MATERIAL E MÉTODOS

4.1 Área de estudo

Este estudo foi realizado com escolares, na faixa etária de 3-15 anos, da rede pública de ensino dos municípios pernambucanos de Camocim de São Félix, Salgadinho e Tupanatinga (localizados na região Agreste de Pernambuco), no período de agosto a dezembro de 2016.

O município de Camocim de São Félix se estende por 72,5 km², com 17 104 habitantes e densidade demográfica de 236 habitantes por km² (CIDADES BRASIL, 2016). Nesta cidade, 227 escolares fizeram parte do inquérito, sendo 28 da área rural e 198 da área urbana.

O município de Salgadinho ocupa uma área de 88,8 km², com uma população de 9287 habitantes e densidade demográfica é de 104,6 habitantes por km² (CIDADES BRASIL, 2016). Fizeram parte do estudo 212 escolares: 66 da área rural e 146 da área urbana.

Ocupando uma área de 884,4 km², o município de Tupanatinga tem uma população de 24425 habitantes e densidade demográfica de 27,6 habitantes por km² (CIDADES BRASIL, 2016). Nesta cidade, 211 alunos fizeram parte do inquérito: 122 da área rural e 89 da área urbana.

Este estudo foi realizado em parceria com o Programa de Enfrentamento às Doenças Negligenciadas (SANAR) da Secretaria de Vigilância em Saúde de Pernambuco (SEVS-PE), responsável pela condução da logística junto aos gestores de das Gerências Regionais de Saúde (GERES) envolvidas.

4.2 Amostras fecais

As amostras de fezes foram acondicionadas em potes coletores (Figura 10) e armazenadas a frio até o processamento em laboratório.

Figura 10 – Pote coletor identificado.

Fonte: Arquivo pessoal, 2016.

Os laboratórios responsáveis pelo processamento das amostras foram o Laboratório Central de Pernambuco – LACEN/Laboratório Central de Endemias – LABEND e o Laboratório de Parasitologia (LAPAR) da Universidade Federal Rural de Pernambuco (UFRPE) (Figura 11).

As amostras foram processadas pelas técnicas de sedimentação espontânea e Kato Katz (Helm Teste Bio-Manguinhos) (Figura 12) (GLINZ et al., 2010).

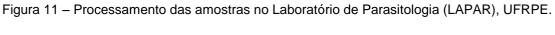


Figura 12 – Técnica de Kato Katz (Helm Teste Bio-Manguinhos)..

Fonte: Arquivo pessoal, 2016.

4.3 Ações de educação em saúde

As ações de educação em saúde foram realizadas na forma de palestras (Figura 13), oficinas para a confecção de folhetos e cartazes (Figura 14), desenhos e pinturas (Figura 15) e jogos de perguntas e respostas (Figura 16), levando em consideração a faixa etária dos escolares.

Estas ações ocorreram no marco do projeto de extensão "Parasitologia para Todos: promoção da saúde humana, saúde animal e saúde ambiental", coordenado pela Prof^a. Jaqueline Bianque de Oliveira.

5 RESULTADOS

Em total, foram analisadas amostras fecais de 650 escolares, sendo 436 (67,07%) da área urbana e 214 (32,92%) da área rural dos municípios de Camocim de São Félix, Salgadinho e Tupanatinga. A distribuição dos escolares de acordo com o sexo e a faixa etária é apresentada na tabela 1.

Tabela 1 - Dados de sexo e idade de escolares dos municípios de Camocim de São Félix, Salgadinho e Tupanatinga que participaram do inquérito coproparasitológico no período de agosto a dezembro de 2016.

	Se	хо	Idade		
Município	F	M	0□5	6□1 0	11□15
Camocim de São Félix	111	116	37	98	92
Salgadinho	111	101	21	112	79
Tupanatinga	92	119	15	82	114
Total	314	336	73	292	285

Das 650 amostras, em 263 (40,46%) foram diagnosticados parasitos intestinais. A prevalência da infecção por enteroparasitos na área urbana foi maior 41,97% (183/436) do que na área rural 37,38% (80/214).

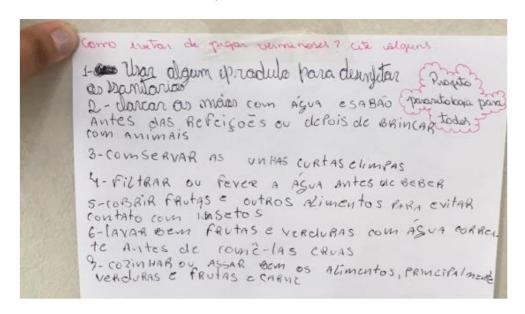
Os enteroparasitos diagnosticados e suas respectivas prevalências foram: Ascaris lumbricoides 30,30% (197/650), Giardia duodenalis 4,61% (30/650), Hymenolepis nana 2% (13/650), Entamoeba histolytica 2% (13/650), Schistosoma mansoni 0,30% (2/650), Ancilostomídeos 0,30% (2/650), Enterobius vermicularis 0,30% (2/650) e Taenia sp. 0,15% (1/650).

O monoparasitismo foi mais prevalente 92,39% (243/263).

Na cidade de Salgadinho, a prevalência dos enteroparasitos foi 94,81% (201/212): 98,64% (146/148) na área urbana e 85,93% (55/64) na área rural. Os enteroparasitos diagnosticados e suas respectivas prevalências foram: *A. lumbricoides* 91,03% (193/212), *G. duodenalis* 2,35% (5/212), *S. mansoni* 0,94%

(2/212) e *Taenia* sp. 0,47% (1/212). O monoparasitismo foi mais prevalente 99,50% (200/201).

Em Camocim de São Félix, a prevalência dos enteroparasitos foi 15,41% (35/227): 32,14% (9/28) na área rural e 13,06% (26/199) na área urbana. Os parasitos diagnosticados foram: *H. nana* 5,72% (13/227), *G. duodenalis* 3,96% (9/227), *E. histolytica* 3,52% (8/227), *A. lumbricoides* 1,32% (3/227), Ancilostomídeos 0,88% (2/227) e *E. vermicularis* 0,44% (1/227). A prevalência do monoparasitismo foi 97,14% (34/35).


Na cidade de Tupanatinga, a prevalência dos enteroparasitos foi 12,79% (27/211): 13,11% (16/122) na área rural e 12,35% (11/89) na área urbana. Os parasitos foram: *G. duodenalis* 59,25% (16/27), *E. histolytica* 18,51% (5/27), *E. vermicularis* 3,70% (1/27) e *A. lumbricoides* 3,70% (1/27). Os escolares estavam parasitados por apenas uma espécie de enteroparasito.

As ações de promoção à saúde foram realizadas com atividades lúdicas, com o objetivo de informar sobre as principais formas de contaminação por enteroparasitos e, consequentemente, apresentar as principais formas de prevenção. Os escolares se mostraram receptivos e se envolveram nas atividades desenvolvidas (Figuras 13, 14, 15, 16 e 17).

Figura 13 - Palestra realizada para os escolares.

Figura 14 – Folhetos criados pelos escolares com informações sobre a prevenção das parasitoses.

Fonte: Arquivo pessoal, 2016.

Figura 15 – Escolares com pinturas realizadas por eles.

Figura 16 – Jogo de perguntas e respostas.

Fonte: Arquivo pessoal, 2016.

Figura 17 – Banner utilizados nas escolas, apresentando as principais medidas de controle das geohelmintíases.

6 DISCUSSÃO

No Brasil, o índice de indivíduos infectados com algum tipo de enteroparasito é sabidamente elevado (SANTOS et al., 2006). Segundo Rey et al. (2008), a prevalência nacional das enteroparasitoses é 36,7%. Entretanto, segundo estes autores, há uma tendência de declínio desta prevalência, que pode estar relacionada com alguns investimentos em infraestrutura sanitária ocorrido nos últimos anos no país, além do tratamento sistemático dos casos diagnosticados (REY et al., 2008).

As enteroparasitoses estão entre as sete doenças negligenciadas mais prevalentes no mundo (AGUIAR-SANTOS et al., 2013). A prevalência determinada neste estudo é superior à prevalência nacional (36,7%) e inferior à registrada por Aguiar-Santos et al. (2013) (64,2%) em escolares com idade de 5 a 18 anos da cidade de Olinda. Santos-Aguiar et al. (2013) utilizaram apenas a sedimentação espontânea, o que difere do presente estudo onde duas técnicas foram empregadas.

Devido as suas características, as parasitoses intestinais geralmente estão associadas às precárias condições socioeconômicas da população atingida AGUIAR-SANTOS et al., 2013). A ocorrência de elevadas prevalências guarda estreita relação com a falta de saneamento básico, associada às péssimas condições e noções higiênicas, o consumo de água não potável, o andar descalço e a ingestão de alimentos contaminados favorecem (AGUIAR-SANTOS et al., 2013; CDC, 2019; DOS SANTOS et al., 2014). Estas condições, são comuns em municípios com Índice de Desenvolvimento Humano Municipal baixo (IDH entre 0,500 a 0,599) (PNUD, 2013). Os IDH de Camocim de São Felix, Salgadinho e Tupanatinga são, respectivamente: 0,588, 0,534 e 0,519.

No presente estudo a área urbana apresentou maior prevalência. De acordo com Gurgel et al. (2005). De modo geral, os enteroparasitos têm ampla distribuição geográfica, sendo encontrados em zonas rurais ou urbanas de vários estados, com intensidade variável, segundo o ambiente e a espécie parasitária, prevalecendo em altos níveis onde são mais precárias as condições socioeconômicas da população.

O município de Salgadinho apresentou a maior prevalência (94,81%), superior à assinalada em Olinda por Aguiar-Santos et al. (2013). Um estudo realizado na cidade de Manaus, demonstrou uma prevalência de 44,2% para infecções parasitárias (VISSER et al., 2011), semelhante à do presente estudo.

Quanto às espécies parasitárias encontradas, o helminto *A. lumbricoides* e o protozoário *G. duodenalis* foram os mais prevalentes, o que também já foi demonstrado em diversos levantamentos epidemiológicos (AGUIAR-SANTOS et al., 2013; ANDRADE et al., 2011; GIL et al., 2013; LODO et al., 2010; MATOS; CRUZ, 2012; OLIVEIRA et al., 2010; SEGER et al., 2010; YIHENEW et al., 2014). No Brasil, vários levantamentos coproparasitológicos em diferentes comunidades têm demonstrado que *A. lumbricoides* é o helminto que ocorre com maior frequência (MACEDO, 2005; REDANTE, 2005), o que foi também foi demonstrado no presente estudo e no estudo realizado por Aguiar-Santos et al. (2013). A prevalência deste parasito é superior à que foi registrada no Espírito Santo (4,8%) (CASTRO et al., 2004). A elevada prevalência deste helminto em escolares é preocupante, uma vez que cargas parasitárias elevadas podem resultar em bloqueio mecânico do intestino delgado, principalmente em crianças, podendo causar ruptura das alças intestinais resultando em mortalidade (SILVA et al., 2011).

Os protozoários *E. histolytica* e *G. duodenalis*, registradas neste estudo, refletem as condições de saneamento básico, a presença ou não de rede de esgoto, a qualidade da água consumida e os hábitos de higiene a que os escolares estão expostos (SEIXAS et al, 2011). Stephenson (1990) constatou que *A. lumbricoides, T. trichiura* e os Ancilostomídeos são os helmintos mais frequentemente encontrados em inquéritos helmintológicos.

O monoparasitismo foi mais prevalente neste estudo. No entanto, a associação de duas ou mais espécies de parasitos foi vista em alguns casos, com a associação de até três espécies diferentes infectando um mesmo indivíduo. A associação mais comum foi de *A. lumbricoides* e *G. duodenalis*. Dados semelhantes também foram observados nos escolares da rede pública de ensino de Natal, (SATURNINO et al., 2005) e Porto Alegre (ROQUE et al., 2005).

Ainda que os enteroparasitos possam acometer indivíduos de qualquer idade, crianças em fase escolar, principalmente na primeira infância (entre três e cinco anos de idade), são as mais vulneráveis, sobretudo pela falta de maturidade do sistema imunológico e por noções precárias de higiene (CORADI, 2010). Por este aspecto, devem merecer maior atenção no que diz respeito às ações preventivas. Trata-se de uma parcela da população cujos efeitos deletérios da ação do parasitismo resultam em retardo no desenvolvimento físico e no aprendizado, subnutrição, anemia, além

de outras alterações fisiológicas (MELO et al., 2010). Ainda que a infecção parasitaria possa acometer todas as idades,

Tendo em vista os hábitos de higiene tidos pela população, o contato direto com solo pelo hábito de andar descalço, a falta de higienização das mãos que antecede as refeições ou após o uso do banheiro, o não hábito de cortar as unhas e principalmente a lavagem inadequada dos alimentos constituem importantes fatores de risco para a contaminação por enteroparasitos (DOS SANTOS et al., 2014).

Recomenda-se que a lavagem de alimentos seja efetuada com a utilização de algumas soluções higienizadoras, como hipoclorito de sódio, vinagre ou até mesmo a simples água fervida. Além disso, as frutas e as carnes consumidas são adquiridas frequentemente em feiras livres da região, sem procedência conhecida e onde ficam expostas a insetos e/ ou poeira, que podem carrear ovos de parasitas, tornando-se uma importante fonte de contaminação (FONSECA et al., 2006; FERNANDES et al., 2015).

Segundo Correia (2016), a execução de atividades de educação em saúde contribui com uma melhoria na qualidade de vida da população.

No presente trabalho, durante das atividades de educação em saúde, os escolares demonstraram ter conhecimento em relação à prevenção das infecções parasitárias, o que pôde ser explorado e trabalhado através dos uso das diferentes estratégias pedagógicas que foram desenvolvidas, de maneira similar ao que foi realizado na zona rural da cidade de São Sebastião em Alagoas (BARBOSA, 2017).

As estratégias de intervenção de educação em saúde no ambiente escolar permitiram atingir um maior número possível de crianças, de maneira a contribuir com a diminuição da carga parasitária dos escolares, seguindo os princípios do plano de ação de controle as geohelmintíases (BRASIL, 2012). Assim como a campanha do Ministério da Saúde para o enfrentamento das geohelmintíases em escolares do ensino público, este estudo também teve como atividades propostas a orientação, atividades educativas e mobilização dos escolares em torno da temática (BRASIL, 2012; BRASIL, 2013).

Devido à insuficiência de programas específicos de controle e de educação para a saúde, altas prevalências de parasitoses em escolares ainda são registradas no Brasil, em particular, no estado de Pernambuco.

7 CONCLUSÕES

A prevalência de parasitos intestinais nos escolares da área urbana das cidades de Camocim de São Félix, Salgadinho e Tupanatinga é elevada, reforçando a relação entre as baixas condições socioeconômicas e a prevalência de destes parasitos.

O helminto *Ascaris lumbricoides* e os protozoários *Giardia lamblia*, foram os parasitos mais frequentemente encontrados. Por meio da intervenção em educação em saúde, pôde-se constatar que alguns hábitos de higiene são negligenciados pela população estudada. A análise conjunta dos dados indica que há necessidade contínua de melhorias das condições sanitárias e a conscientização das práticas higiênicas adequadas para proporcionar uma melhor qualidade de vida da população residente. Essas medidas precisam ter impacto na cultura da população, para que tenham efeito sobre seus hábitos higiênicos.

Os resultados que aqui foram expressados, confirmam que é de suma importância realizar investimentos voltados para a melhoria da situação ambiental e condições socioeconômicas da população.

8 REFERÊNCIAS BIBLIOGRÁFICAS

AGUIAR-SANTOS, A. M. et al. Avaliação epidemiológica de doenças negligenciadas em escolares: fi lariose linfática e parasitoses intestinais. **Jornal de Pediatria**, v. 89, n. 3, 2013.

AMARAL, A.D.F. & AVILA PIRES, C.D. **Algumas observações sobre himenolepíasis humanas**. Folia clin. biol., S. Paulo. 18:75-98, 1952.

ANDRADE, E.C. et al. Prevalência de parasitoses intestinais em comunidade quilombola no Município de Bias Fortes, Estado de Minas Gerais, Brasil, 2008. **Epidemiologia e Serviços de Saúde**, v. 20, n. 3, p. 337-344, 2011.

ASAOLU, S. O.; OFOEZIE, I. E. The role of health education and sanitation in the control of helminth infections. **Acta tropica**, v. 86, n. 2-3, p. 283-294, 2003. BARBOSA, L. A. et al. **A educação em saúde como instrumento na prevenção 99 de parasitoses**. RBPS, v.22, n.4, p. 272-278, Fortaleza, 2009.

BARBOSA, A. A. L. Plano de intervenção para redução da prevalência de parasitoses intestinais nos escolares da ESF do povoado de Cana Brava, zona rural no município de São Sebastião-AL. 2017.

BASSO, R. M. C. et al. Evolução da prevalência de parasitoses intestinais em escolares em Caxias do Sul, RS. Revista da Sociedade Brasileira de Medicina Tropical. Brasília. Vol. 41, no. 3 (maio/jun. 2008), p. 263-268, 2008.

BELLOTO, M. V. T. et al. Enteroparasitoses numa população de escolares da rede pública de ensino do Município de Mirassol, São Paulo, Brasil. **Revista Pan-Amazônica de Saúde**, v. 2, n. 1, p. 37-44, 2011.

BETHONY, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. **The Lancet**, v. 367, n. 9521, p. 1521-1532, 2006.

BRASIL. Ministério da saúde. **Doenças negligenciadas: estratégias do Ministério da saúde**. Brasília: Ministério da saúde; 2011.

BRASIL. Ministério da saúde. **Secretaria de Vigilância em Saúde**. Departamento de vigilância em Doenças Transmissíveis. Plano integrado de ações estratégicas de eliminação da hanseníase, filariose, esquistossomose e oncocercose como problema de saúde pública, tracoma como causa de cegueira e controle das geohelmintíases: plano de ação 2011-2015. Brasília: Ministério da Saúde, 2012. 100p. II.

BRASIL. Ministério da Saúde. **Secretaria de Vigilância em Saúde. Departamento Geral de Hanseníase e Doenças em Eliminação**. Informe técnico da "Campanha Nacional de Hanseníase e Geohelmintíases". Brasília, fevereiro de 2013.

CAMPOS, C. A. M.; SILVA, E. B. O.; CAMPOS, N. W. C. Associação entre

enterobiose e enurese em crianças de um orfanato de Natal, RN, BRASIL. **Revista de Patologia Tropical**, Natal, v. 40, n. 3, p.247-252, set. 2011.

CASTRO, A. Z. et al. Levantamento das parasitoses intestinais em escolares da rede pública na cidade de Cachoeiro de Itapemirim–ES. **Newslab**, v. 64, n. 13, p. 140-44, 2004.

CENTERS FOR DESEASE CONTROL AND PREVENTION. Amebiasis. Disponível em: https://www.cdc.gov/dpdx/amebiasis/index.html. Acesso em: 16 jan. 2019.

CENTERS FOR DESEASES CONTROL AND PREVENTION. **Ascariasis**. Disponível em: https://www.cdc.gov/parasites/ascariasis/biology.html>. Acesso em: 16 jan. 2019.

CENTERS FOR DESEASE CONTROL AND PREVENTION. Enterobiasis. Disponível em: https://www.cdc.gov/parasites/pinworm/biology.html. Acesso em: 16 jan. 2019.

CENTERS FOR DESEASE CONTROL AND PREVENTION. Giardiasis. Disponível em: https://www.cdc.gov/dpdx/giardiasis/index.html. Acesso em: 16 jan. 2019.

CENTERS FOR DESEASES CONTROL AND PREVENTION. Hymenolepiasis. Disponível em: https://www.cdc.gov/parasites/hymenolepis/biology.html. Acesso em: 16 jan. 2019.

CENTERS FOR DESEASE CONTROL AND PREVENTION. **Hookworm**. Disponível em: https://www.cdc.gov/dpdx/hookworm/index.html>. Acesso em: 16 jan. 2019.

CENTERS FOR DESEASES CONTROL AND PREVENTION. **Schistosomiasis**. Disponível em: https://www.cdc.gov/parasites/schistosomiasis/biology.html>. Acesso em: 16 jan. 2019.

CENTERS FOR DESEASE CONTROL AND PREVENTION. Taeniasis. Disponível em: https://www.cdc.gov/parasites/taeniasis/biology.html. Acesso em: 16 jan. 2019.

CHIEFFI, P. P; FERREIRA, L. F. Alterações na estrutura epidemiológica da Ancilostomose no Estado de São Paulo, Brasil (1900–1987). **Revista de Patologia Tropical**, v. 37, n. 4, p. 311-322, 2008.

CORADI, S. T. Epidemiologia das parasitoses intestinais e caracterização genotípica de isolados de Giardia duodenalis de escolares do município de Pratânia, estado de São Paulo. 2010.

CORREIA, M. A. A. Educação em saúde para os escolares participantes da campanha da geohelmintíase: um estudo de intervenção. 2016.

COSTA, T. D et al. Análise de enteroparasitoses em crianças em idade pré-escolar em município de Santa Catarina, Brasil. **Revista Prevenção de Infecção e Saúde**, v. 1, n. 2, p. 1-9, 2015.

DA, COMPLEXO TENÍASE-CISTICERCOSE EM ASSENTAMENTOS. **EMILIO CAMPOS ACEVEDO NIETO**. 2015. Tese de Doutorado. Universidade Federal de Viçosa.

DE ANDRADE, E. C. et al. Parasitoses intestinais: uma revisão sobre seus aspectos sociais, epidemiológicos, clínicos e terapêuticos. **Revista de APS**, v. 13, n. 2, 2010.

DE AZEVEDO ALBUQUERQUE, M. C. P et al. EDUCAÇÃO EM SAÚDE: UMA FERRAMENTA PARA A PREVENÇÃO E CONTROLE DE PARASITOSES Doi: http://dx. doi. org/10.5892/ruvrd. v11i2. 300310. **Revista da Universidade Vale do Rio Verde**, v. 11, n. 2, p. 300-310, 2013.

DE FREITAS MAGALHÃES, R. et al. Ocorrência de Enteroparasitoses em Crianças de Creches na Região do Vale do Aço–MG, Brasil. **Journal of Health Sciences**, v. 15, n. 3, 2015.

DE MATOS, M. A.; CRUZ, Z. V. Prevalência das parasitoses intestinais no município de Ibiassucê-Bahia. 2012.

DE OLIVEIRA, C. L. M et al. Parasitoses intestinais e fatores socioambientais de uma população da área periurbana de Manaus-AM. **Revista Brasileira em Promoção da Saúde**, v. 23, n. 4, p. 307-315, 2012.

DICAS DE CIÊNCIAS. Schistosoma – ciclo de vida. Disponível em: https://dicasdeciencias.com/2008/06/27/schistosoma-ciclo-de-vida/comment-page-2/. Acesso em: 16 jan. 2019.

DOLD, C.; HOLLAND, C. V. Ascaris and ascariasis. **Microbes and infection**, v. 13, n. 7, p. 632-637, 2011.

DOS SANTOS, A.A.; GURGEL-GONÇALVES, R.; MACHADO, E.R. Factors associated with the Occurrence of Intestinal Parasites in Children Living in the Federal District of Brazil. **Revista de Patologia Tropical**, v. 43, n. 1, p. 89-97, 2014.

FONSECA, MJ de O. et al. Preparo de frutas e hortaliças minimamente processadas em bancos de alimentos. **Embrapa Agroindústria de Alimentos-Documentos** (INFOTECA-E), 2006.

FONSECA, E. O. L et al. Prevalência e fatores associados às geo-helmintíases em crianças residentes em municípios com baixo IDH no Norte e Nordeste brasileiros. **Cadernos de Saúde Pública**, v. 26, p. 143-152, 2010.

GALÁN-PUCHADES, M. T; FUENTES, M.V. Lights and shadows of the Taenia

- asiatica life cycle and pathogenicity. **Tropical parasitology**, v. 3, n. 2, p. 114, 2013.
- GIL, F. F. et al. High prevalence of enteroparasitosis in urban slums of Belo Horizonte-Brazil. Presence of enteroparasites as a risk factor in the family group. **Pathogens and global health**, v. 107, n. 6, p. 320-324, 2013.
- GOMES, P. D. M. F. et al. Enteroparasitos em escolares do distrito Águas do Miranda, município de Bonito, Mato Grosso do Sul. **Revista de Patologia Tropical**, v. 39, n. 4, p. 299-307, 2010.
- GOMES, S. C. S. et al. Educação em saúde como instrumento de prevenção das parasitoses intestinais no município de Grajaú-MA. **Pesquisa em Foco**, v. 21, n. 1, 2016.
- GURGEL, R.Q., SILVA, A.M., OLIVEIRA, R.C.V. Creche: ambiente expositor ou protetor nas infecções por parasitas intestinais em Aracaju, SE. **Revista Brasileira de Medicina Tropical**, v.38, p.267-269, 2005.
- HOFFMAN, W. A; PONS, J. A; JANER, J. L. Sedimentation concentration method in schistosomiases. Journal Public Health, v. 9, 283-298.
- HOTEZ, P. A new voice for the poor. **PLoS neglected tropical diseases**, v. 1, n. 1, p. e77, 2007.
- LODO, M. et al. Prevalência de enteroparasitas em município do interior paulista. **Revista Brasileira de Crescimento e Desenvolvimento Humano**, v. 20, p. 769-777, 2010.
- MACEDO, H. S. Prevalência de parasitos e comensais intestinais em crianças de escolas da rde pública municipal de Paracatu (MG). **Rev. bras. anal. clin**, v. 37, n. 4, p. 209-213, 2005.
- MAMUS, C. N. C et al. Enteroparasitoses em um centro de educação infantil do município de Iretama/PR. **SaBios-Revista de Saúde e Biologia**, v. 3, n. 2, 2008.
- MELO, E. M; FERRAZ, F. N; ALEIXO, D. L. Importância do estudo da prevalência de parasitos intestinais de crianças em idade escolar. **SaBios-Revista de Saúde e Biologia**, v. 5, n. 1, 2010.
- MISHRA, P. K. et al. Systemic impact of intestinal helminth infections. **Mucosal immunology**, v. 7, n. 4, p. 753, 2014.
- NEVES, D. P.; LINARDI, P. M.; VITOR, R. W. A. Parasitologia humana. 11^a. **São Paulo: Atheneu**, 2005.
- NEVES, E.V.R. Prevalência de enteroparasitoses em crianças do ensino fundamental I, matriculadas na escola Manoel Machado Pedreira, no município de Governador Mangabeira-Ba. 2018.

OBERMEIER, J.; FROHBERG, H. Mutagenicity studies with praziquantel, a new anthelmintic drug: tissue-, host-, and urine-mediated mutagenicity assays. **Archives of toxicology**, v. 38, n. 3, p. 149-161, 1977.

OLSON, Peter D. et al. Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). **Molecular Phylogenetics and Evolution**, v. 19, n. 3, p. 443-467, 2001.

ORGANIZAÇÃO MUNDIAL DA SAÚDE. Folheto sobre a Prevenção e o Controle das Geohelmintoses. Genebra, 2001.

PERNAMBUCO. Secretaria de Saúde. **Plano para redução e eliminação das doenças negligenciadas no estado de Pernambuco 2011-2014**. Pernambuco: Secretaria de Saúde, 2011.

Prado MD, Barreto ML, Strina A, Faria JA, Nobre AA, Jesus SR. Prevalência e intensidade da infecção por parasitas intestinais em crianças na idade escolar na Cidade de Salvador (Bahia, Brasil). **Rev Soc Bras Med Trop** 34: 99-101, 2001.

Redante D. prevalência de parasitoses em crianças moradoras da colônia Z3 – Pelotas. Rio Grande do Sul (dissertação apresentada à faculdade Enfermagem e Obstetrícia, Universidade Federal de Pelotas), 2005.

REY, L. Parasitologia. 4. ed. Rio de Janeiro: Guanabara Koogan S. A., 2008.

RIBEIRO, D. F.; CORREIA, B. R.; SOARES, A. K. F.; ROCHA, M. K. L.; ALVES, E. R. P.; ALBUQUERQUE, M. C. P. A. Educação em saúde: uma ferramenta para a prevenção e controle de parasitoses. Revista da Universidade Vale do Rio Verde, v. 11, n. 2, p. 300-310, 2013.

ROCHA, T.J.M et al. Aspectos epidemiológicos y distribución de los casos de infección por Schistosoma mansoni en municipios del Estado de Alagoas, Brasil. **Revista Pan-Amazônica de Saúde**, v. 7, n. 2, p. 27-32, 2016.

RODRIGUES, J. A; CARNEIRO, W. S; ATHAYDE, A. C. R. Infecções por helmintos gastrointestinais: perfil de crianças em escolas públicas e privadas do Sertão Paraibano. **News Lab**, v. 186, p. 128-36, 2013.

ROQUE, F. C et al. Parasitos intestinais: prevalência em escolas da periferia de Porto Alegre–RS. **NewsLab**, v. 69, p. 152-162, 2005.

SANTANA, L. A et al. Tricuríase: atualidades. **Pediatr. mod**, v. 50, n. 9, 2014.

SANTO, M. E. S et al. Ocorrência de enteroparasitos em crianças atendidas no programa de saúde da família de uma área de abrangência do município de

Vespasiano, Minas Gerais, Brasil. **Revista Eletrônica de Enfermagem**, v. 8, n. 1, 2006.

SATURNINO, A. C.R. D et al. Enteroparasitoses em escolares de 1ºgrau da rede pública da cidade de Natal, RN. **Rev. bras. anal. clin**, p. 85-87, 2005.

SCHÄR, F. et al. Strongyloides stercoralis: global distribution and risk factors. **PLoS neglected tropical diseases**, v. 7, n. 7, p. e2288, 2013.

SEGER, J. et al. Prevalência de parasitas intestinais na população do Bairro Salete, município de São Miguel do Oeste, SC. **Unoesc & Ciência-ACBS**, v. 1, n. 1, p. 53-56, 2010.

SEIXAS, M. T. L et al. Avaliação da frequência de parasitos intestinais e do estado nutricional em escolares de uma área periurbana de Salvador, Bahia, Brasil. **Revista de Patologia Tropical**, v. 40, n. 4, p. 304-314, 2011.

SILVA, J. C. et al. Parasitismo por Ascaris lumbricoidese e seus aspectos epidemiológicos em crianças do estado do Maranhão. **Rev Soc Bras Med Trop**, v. 44, n. 1, p. 100-2, 2011.

SILVA, A. et al. Epidemiologia e prevenção de parasitoses intestinais em crianças das creches municipais de Itapuranga—GO. **Revista Eletrônica Faculdade Montes Belos**, v. 8, n. 2, 2015.

STEPHENSON, L. S. et al. Improvements in physical fitness of Kenyan schoolboys infected with hookworm, Trichuris trichiura and Ascaris lumbricoides following a single dose of albendazole. **Transactions of the Royal Society of Tropical Medicine and Hygiene**, v. 84, n. 2, p. 277-282, 1990.

TU-BIN, C. et al. Enterobius vermicular is infecionis well controlled among preschool children in nurseries of Taipei City, Taiwan. **Revista da Sociedade Brasileira de MedicinaTropical**. 45(5): 646-648, Sep-Oct, 2012.

VISSER, S. et al. Estudo da associação entre fatores socioambientais e prevalência de parasitose intestinal em área periférica da cidade de Manaus (AM, Brasil). **Ciência & Saúde Coletiva**, v. 16, p. 3481-3492, 2011.

WARUNEEN. et al. Intestinal parasitic infections among school children in Thailand. Trop Biomed 2007; 24:83-88.

YIHENEW, G. et al. The Impact of Cooperative Social Organization on Reducing the Prevalence of Malaria and Intestinal Parasite Infections in Awramba, a Rural Community in South Gondar, Ethiopia. Interdisciplinary Perspectives on Infectious Diseases, v. 2014, Article ID 378780, 6 pages.