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Resumo

Percebendo a diversidade de uso das nanoestruturas em gerar compostos com ge-
ometrias diversificadas e bem precisas, fazer uso de abordagens que incluam com-
ponentes de geometria diferencial parece um caminho razoavel. Por essa otica, em-
pregamos o confinamento eletrébnico em nanoestruturas através das abordagens com-
putacional, intrinseca e extrinseca, pelos quais permitem estudos preliminares no de-
senvolvimento de novos dispositivos eletrénicos de maior sofisticacédo. Este trabalho,
portanto, busca estudar o confinamento de 1 e 2 elétrons em estruturas unidimensio-
nais (lineares, circulares, lineares com curvas e similares a parabolas), analisar seus
espectros energéticos, as distribuicbes de carga a partir de simulagées computacio-
nais e compara-los com modelos teoricos. Apresentamos resultados de distribuigéo
de cargas que demonstraram ser adequados aos modelos teoricos.

Palavras-chave: confinamento eletrénico, geometria diferencial, nanoestruturas.



Abstract

Realizing about diversity of nanostructures use in generating compounds with diversi-
fied and very precise geometries, making use of approaches that include differential
geometry components seems a reasonable path. From this perspective, we employ
electronic confinement in nanostructures through computational, intrinsic and extrinsic
approaches, which allow preliminary studies in the development of new electronic de-
vices of greater sophistication. This work, therefore, seeks to study the confinement of
1 and 2 electrons in one-dimensional structures (linear, circular, linear with curves and
similar to paraboles), analyze their energy spectra, charge distributions from computer
simulations and compare them with theoretical models. We present load distribution
results that proved to be adequate for theoretical models.

Keywords: electronic confinement, differential geometry, nanostructures.



Lista de Figuras

Figura1 — Vetor velocidade (55) e aceleragédo () em um circulo. . . . ... .. 14
Figura 2 — Alguns sistemas usados para o confinamento eletrénico. . . . . . . 21
Figura 3 — Regides do confinamento eletrénico em sistemas lineares. . . . . . 22
Figura 4 — Distribuigcdo de carga nos sistemas lineares. . . ... ... ... .. 23
Figura5 — Gréaficos comparativos entre as energias computacional e teorica in-
trinseca em sistemas lineares. . . ... ... ... ... ....... 23
Figura 6 — Regides de confinamento em sistemas com geometriaem T. . ... 24
Figura 7 — Distribuicdo de carga em sistemas com geometriaem T.. . . . . .. 24
Figura 8 — Distribuicbes de carga nas geometrias em T com a reta horizontal
deslocada. . . .. .. .. . .. ... 24
Figura9 — Gréficos comparativos entre as energias computacional e teorica in-
trinseca em sistemas lineares com retas conectadas. . . ... ... 25
Figura 10 — Regides do confinamento eletrénico em sistemas circulares. . ... 25
Figura 11 — Distribuicbes de carga nos sistemas circulares. . . . . . .. ... .. 26
Figura 12 — Gréaficos comparativos entre as energias computacional e teorica in-
trinseca em sistemas lineares com retas conectadas. . . ... ... 26
Figura 13 — Regides do confinamento eletrénico em sistemas parabdlicos. . .. 27
Figura 14 — Distribuicdo de carga para os sistemas parabdlicos suaves. . . . . . 27
Figura 15 — Graficos comparativos entre as energias computacional e teorica in-
trinseca. . . . . . ... e 28
Figura 16 — Graficos comparativo entre as energias computacional e intrinseca
tedrica entre os sistemas lineares e parabodlicos suave. . . . .. .. 29
Figura 17 — Distribui¢cdo de carga em sistemas parabdlicos retos no confinamento
detelétron. . . .. . . . . . ... 29
Figura 18 — Graficos comparativos entre as energias computacional e teorica in-
trinseca em pardbolasretas. . . ... ... ... .. ... ... ... 30

Figura 19 — Regides do confinamento eletrénico em sistemas lineares com curvas. 30
Figura 20 — Distribuicbes de cargas em sistemas lineares com curvas no meio

no confinamentode telétron. . . . . . ... ... ... .. ...... 31
Figura 21 — Gréaficos comparativos entre as energias computacional e tebrica in-

trinseca em sistemas lineares com curvas meio. . . . . ... .. .. 31
Figura 22 — Distribuigdes de carga em sistemas lineares com curvas ponta. . . . 32
Figura 23 — Graficos comparativos entre as energias computacional e tedrica in-

trinseca em sistemas lineares com curvas ponta. . . . . .. ... .. 32

Figura 24 — Distribuigbes de carga no confinamento de 2 elétrons em sistemas
lineares. . . . . . . . . e e 33



Figura 25 — Gréfico das energias computacionais nos sistemas lineares para o
confinamentode 2 elétrons. . . . . . . . .. .. ... ...
Figura 26 — Distribuigcbes de carga em sistemas lineares com retas conectadas
para o confinamentode 2 elétrons. . . . . ... ... ... ......
Figura 27 — Gréfico das energias computacionais nos sistemas lineares com ge-
ometria T para o confinamentode 2 elétrons. . . . . ... ... ...
Figura 28 — Distribuigdo de carga em sistemas circulares no confinamento de 2
elétrons. . . . . . .. e
Figura 29 — Gréfico das energias computacionais nos sistemas circulares para o
confinamentode 2elétrons. . . . . . .. ... ... ...
Figura 30 — Distribuicbes de carga em sistemas similares aos parabolicos no
confinamentode 2 elétrons. . . . . . . . . ... ...
Figura 31 — Grafico das energias computacionais nos sistemas similares aos
parabdlicos no confinamentode 2 elétrons. . . . . . .. ... .. ..
Figura 32 — Distribui¢cbes de carga em sistemas lineares com curvas no confina-
mentode 2elétrons. . . . . . ... e
Figura 33 — Gréfico das energias computacionais em sistemas lineares com cur-
vas no confinamentode 2elétrons. . . . . . .. .. ... ... ...,

34

34

35

35

36

36

37

37



2.1
2.1.1
2.2
2.3
23.1
2.3.2

3.1
3.2

5.1

51.1
512
5.1.3
514
5.2

521
522
523
524

Sumario

INTRODUCAO . . . .. ittt e e e et e et e et e 13
FUNDAMENTACAO TEORICA . .. .. ... ... ... ...... 14
Fundamentos de geometria diferencial . . . . . . . .. ... ... .. 14
CUrvas . . . . e e e e e e e 14
Mecanica Quantica . . . . . . . . . . . ... ... e 15
Teoria do Orbital Molecular . . . . . .. ... ... .......... 16
Método de Hartree-Fock-Roothaan . . . . . . . .. .. ... ... .... 16
Conjuntode Base . . . . . . . . . L 18
OBJETIVOS . . . . . . e e e e e e e e e e e e e e e e e 20
Objetivo Geral . . . . . . . . . . . . . .. e 20
Objetivos Especificos . . . . . .. . ... .. ... ... ........ 20
METODOLOGIA . . . . . e e e e e e e e e 21
RESULTADOS EDISCUSSAO . . . . .. ... .o 22
Confinamentode 1l elétron . . . . .. ... ... .. ......... 22
Lineares . . . . . . o e e e e e e 22
Circulares . . . . . . . . e e 25
Similares a parabdlas . . . . . ... 27
Lineares com cUrvas . . . . . . v v v v v e e e e e e e e e e 29
Confinamento de 2 elétrons . . . . . . . .. ... ... ........ 33
Lineares . . . . . . . i e e e e e e e e e 33
Circulares . . . . . . . o e e 35
Similares aos Parabdlicos . . . . . ... .. ... .. ... .. 35
Lineares com curvas .. . . . . . . o v v i i e e e e e e e e 37
CONSIDERACOES FINAIS . . . . . . o i i e e et e e e 39

REFERENCIAS . . . . . . e e e e e e s e e e, 40



13

1 Introducao

Nanoestruturas sdo compostos que podem ser definidos por apresentarem me-
didas em ordem nanométrica (10~°). No campo da Quimica as estruturas mais pes-
quisadas sdao os nanotubos de carbono, nanocristais, quantum dots, nanocapsulas
e os dendrimeros (CARVALHO; REIS; OLIVEIRA, 2020), devido ao conjunto variado
de propriedades fisico-quimicas e diversidade em suas aplicagdes. Destas, ainda é
provavel obter compostos 1D que apresentem alto potencial de confinamento eletré-
nico, além da versatilidade em coordenar propriedades elétricas, magnéticas e opticas,
como nanofios de selénio (XIA et al., 2003), nanocristais de silicio (EKONG; OSIELE,
2016), etc. Esses nanomateriais apresentam diversas aplicagdes, que partem dos dis-
positivos eletrénicos e vao até a medicina e o desenvolvimento de medicamentos (BA-
RANWAL et al., 2018). Entéao, o estudo de modelos que assemelhem-se a estes pode
contribuir na compreensao dessa categoria de materiais.

O estudo do confinamento eletrénico em nanoestruturas através da geometria
diferencial tornou-se alvo do interesse de pesquisadores, possibilitando o desenvolvi-
mento de novos instrumentos de estudo de sistemas quanticos. Modelagens compu-
tacionais atreladas a geometria diferencial parecem ser relevantes para estabelecer
relagbes entre a quimica computacional e a matematica. Particularidades das nano-
estruturas podem ser associadas a célculos computacionais caracteristicos a estas
estruturas (KHAKPOOR, 2016) e com a geometria diferencial de curvas. Os espectros
energéticos e informacoes relacionadas podem ser estudados a partir da equacao de
Schrddinger, um dos provavéis tratamentos é o que se refere a modelagem do opera-
dor Hamiltoniano. Na abordagem mais trivial o hamiltoniano é construido desvinculado
do ambiente no entorno. Em contrapartida, a abordagem extrinseca considera a regiao
nas adjacéncias do sistema, neste caso o hamiltoniano depende diretamente da curva-
tura associada (DA SILVA; BASTOS; RIBEIRO, 2017). Célculos do tipo Hartree-Fock
se mostraram precisos no estudo das distribuigcdes eletrdnicas nos sistemas fisicos
adotados. Estudamos sistemas quanticos inclusos no espaco 1D (DA COSTA, 1981)
no confinamento de 1 e 2 elétrons.

Na primeira sec¢ao deste trabalho foi investigado o comportamento eletrénico de
uma série de curvas similares a nanoestruturas através das perspectivas intrinseca
e extrinseca para o confinamento de 1 elétron, e na segunda secao estudamos as
mesmas abordagens para o confinamento de 2 elétrons.
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2 Fundamentacao Tedrica

2.1 Fundamentos de geometria diferencial

Nesta secdo iremos abordar os principais elementos de geometria diferencial.
De modo geral, iremos verificar o estudo de curvas descritas por fungdes diferencia-
veis sem o rigor de suas definicbes (CARMO, 2016).

2.1.1 Curvas

Seja uma curva parametrizada 3 : I — R?, onde

te e B(t) = (z(t),y(t), 2(t) € R

neste exemplo a variavel ¢t é designada como o parametro da curva.

Uma forma de determinar essa curva é através de seu vetor velocidade (1),
sendo tangente a curva e a /3(t) temos o vetor aceleragéo. E a equacédo sendo deno-
tada por: 5(t) = (A cos(t), A sen(t), 0).

Figura 1 — Vetor velocidade () e aceleracao () em um circulo.

Além dessa interpretacdo, poderiamos parametrizar a curva novamente da se-
guinte forma:
B(s) = A (cos (s/A), sen (s/A), 0)

Partindo do mesmo pressuposto da parametrizagao anterior, entdo teriamos que:

g(s) = (—sen (s/A),cos (s/A), 0),

G(s) = —1/A(cos (s/A), sen (s/A),0).
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Através dessa parametrizacdo a norma desses vetores é:

13(s)]| = y/—sen?(s/A) + cos(s/A) = 1,

15(s)l| = —1/Ay/cos? (s/A) + sen® (s/A) = —1/A.

Portanto, o vetor velocidade ||3(s)|| € unitario. Assim, podemos dizer que a
curva € parametrizada por comprimento de arco (p.c.a).

K(s) = 8]

Desta forma, somos apresentados ao conceito de curvatura, como sendo a va-
riacdo da direcao do vetor tangente, ou seja, ela mede o quéo uma curva se distingue
de uma reta (uma vez que a curvatura da reta € nula) através do seu vetor tangente.

2.2 Mecanica Quantica

A equacao de Schrddinger € usada para descrever sistemas microscopicos
(SCHRODINGER, 1926), sua forma geral, independente do tempo e unidimensional é

Hi(x) = Ey(x) (2.1)
onde H é o operador Hamiltoniano, (¥) é a fungdo de onda e E é o espectro
do sistema (GRIFFITHS, 2018). O Hamiltoniano também pode ser escrito como

A

H=T+V (2.2)

sendo 7" a energia cinética do sistema e V' a energia potencial. O confinamento
de uma particula é em geral a restricao espacial para seu deslocamento, com ou sem
a acao de um campo externo. Assim, uma particula livre teria seu Hamiltoniano e
consequentemente o espectro reduzido a energia cinética.

Diferentes tratamentos geométricos podem levar a diferentes hamiltonianos de
confinamento, o que em principio evidencia o problema em qual escolha devemos
fazer para a modelagem do confinamento (DA SILVA; BASTOS; RIBEIRO, 2017). As
abordagens geométricas podem ser intrinseca ou extrinseca. A abordagem intrinseca
impde que existe apenas a regido espacial de confinamento n&o precisando fazer
referéncia a nenhum tipo de forca ou potencial de confinamento, como ainda é comum
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nos livros didaticos. O hamiltoniano neste caso é puramento cinético, considerando a
regido unidimensional como uma curva suave ele € dado por
h? d?
H=_-_ 2.3
onde K € a constante de reduzida Planck, i € a massa real da particula e s é o com-
primento de arco.

Nas abordagens extrinsecas além da regido de confinamento se considera o
ambiente a qual esta imersa. Neste caso € necessario a forga externa para simular a
restricdo da particula nesta regiao que, dependendo da forma do potencial de confina-
mento, resulta em diferentes hamiltonianos contendo um potencial geométrico além do
termo cinético. Um tratamento bastante utilizado é o de Da Costa em que ele faz uso
de um potencial quadratico para o confinamento, resultando no seguinte hamiltoniano

R d? R
Hyee = ——— — —k(s)? 2.4
dee 2uds?  8u () (2.4)
onde, s € 0 parametro de comprimento de arco da curva e x(s) € a curvatura
da curva.

2.3 Teoria do Orbital Molecular

Nesta se¢éo iremos abordar os conceitos da teoria do orbital molecular. Usando
métodos desenvolvidos na mecéanica quantica, foi possivel desenvolver a teoria dos
orbitais moleculares (MO) sendo uma alternativa de visualizar ligacbes em moléculas,
obter energias e fungbes de onda (BALLHAUSEN, 1965).

2.3.1 Método de Hartree-Fock-Roothaan

Por volta da metade do século XX, foi introduzido por Hartree 0 método do
campo autoconsistente para o calculo aproximado de funcbdes de onda e de energias
para atomos e moléculas. O método se baseia da seguinte forma: ndo serdao conside-
radas todas as interagdes simultdneas entre os elétrons do sistema, supondo que o
potencial que atua nos elétrons se origina 1) dos nucleos e 2) da distribuicao de carga
média sobre os demais elétrons (LEVINE, 2000).

Para os atomos que apresentam camada de valéncia fechadas essa distribui-
cao é esférica, e o modelo que melhor se aplica é o de campo médio, assim um
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campo atuando sobre um elétron em r;, € dependente da distribuicdo de carga média
dos outros elétrons que possuem a seguinte forma:

1
M’epulséo(ﬁ) = /\P*i\ljd'r (25)
Tij

isto €, o campo esta definido em termos de autofungéo, esta sendo a propria variavel.
O problema tem como solugdo um método correspondente: defini-se uma distribuicao
eletrbnica predeterminada que seja possivel calcular o potencial aproximado, entdo
monta-se o Hamiltoniano aproximado e por fim temos as solugbées. O desempenho
da nova ¥(r) é aparentemente melhor que a primeira; o campo criado a partir dela
resulta no atual hamiltoniano cujas solugcdes originam 0 Novo campo, esse pProcesso se
repete até que o campo seja autoconsistente, ou seja, o potencial calculado em duas
interagdes consecutivas precisa ser constante dentro dos limites pré determinados.

Assim, a ¥(r) para cada elétron num sistema com N elétrons é:

U(r) =Wy (r))Wa(re)Ws(rs)Wy(ry) = Z U, (r;) (2.6)

Esse produto é conhecido por produto de Hartree, usando a Eq. 2.6 na equagao
de Schoédinger é possivel separar em N equacdes independentes para cada elétron
do sistema.

Em anos posteriores do mesmo século, Slater e Fock autonomamente mostra-
ram que o método de Hartree apresentava inconsisténcias e ndo levava em considera-
¢ao o principio da antissimetria da fungdo de onda. No método de Hartree foi utilizado
o principio da exclusédo de Pauli, na sua antiga versao que proibia a existéncia de dois
elétrons compartilhando o mesmo estado quéantico. Desse modo, no lugar de orbitais
espaciais Slater e Fock usaram combinacgdao linear antissimetrica para a obtencédo dos
spin-orbitais, essa analise foi realizada através do determinante de Slater. A teoria do
campo auto-consistente que faz uso da antissimetria do spin-orbital € chamada de
calculo de Hartree-Fock.

A equacao diferencial para encontrar os orbitais de Hartree-Fock tem a seguinte
forma:

FLQ
[_QM v +‘/i(ri)‘| U; = €jU; (2.7)

onde u; é 0 enésimo spin-orbital o hamiltoniano acima é conhecido como o operador
de Fock ou Hartree-Fock e seu autovalor ¢; € a energia do orbital do spin-orbital i e 1.
€ a massa do elétron.
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Em meados de 1951, Roothaan prop6s que as fungdes que representavam os
orbitais moleculares conseguiriam ser adquiridas em termos de fun¢des que pudes-
sem representar os orbitais atbmicos (ROOTHAAN, 1951). Levando em consideragao
que orbitais atbmicos em sistemas polieletronicos sao funcdes aproximadas, a mesma
concepcgao poderia ser aplicada para construcao dos orbitais a partir de fungdes ma-
tematicas que admitissem computacionalmente calculos de propriedades atdbmicas e
moleculares com alto nivel de precisao. O método descrito se popularizou como o mé-
todo de combinacéo linear de orbitais atbmicos (Linear Combination of Atomic Orbitals-
LCAO).

2.3.2 Conjunto de Base

Roothaan e Hall reformularam as equagdes de Hartree e Fock com o intuito de
obter solu¢gdes numéricas. O método consiste em introduzir um conjunto de fungdes
de base normalizadas na equacédo Hartree-Fock. Para expandir a parte espacial dos
spin-orbitais. O problema entéo fica resumido a uma mera diagonalizacdo matricial. A
forma espacial dos orbitais pode ser representada por uma combinagéo linear de K
funcbes de base monoeletrdnicas, como segue:

A remodelagem feita por Roothaan e Hall nas equac6es de Hartree-Fock ti-
nham a finalidade de obter solu¢cées numéricas. O método se fundamenta em inserir
um conjunto de fungdes de base normalizadas no operador de Hartree-Fock, com a
finalidade de expandir o termo espacial dos spin-orbitais, entdo, o problema se resume
a uma simples diagonalizacdo matricial. E possivel representar a geometria espacial
dos orbitais através de uma combinacéo linear de K funcdes de base monoeletrénicas
como:

By(r) = 32 CoyGulr) (2.8)

onde, K é o numero de fun¢des do conjunto e os (), sdo coeficientes a serem
determinados ou simplesmente os coeficientes dos orbitais moleculares.

Como a funcao de onda é capaz de ser representada por uma combinagao
linearmente independente de K fungdes de base compdem a fungédo de onda total,
entdo temos que a equagao de Hartree-Fock é:

Z FlwCuop = € Z SpwCop (2.9)

A partir das definicdes anteriormente determinadas, Pople (1981) desenvolveu
uma nova categoria de fungdes de base conhecidas por funcdes de polarizacéo, sendo
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elas a 6-31G e 6-311G. Estas sao Gaussianas de segunda ordem para compostos nao
hidrogenados.
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3 Objetivos

3.1 Objetivo Geral

Estudar o confinamento eletrdbnico em moléculas e nanoestruturas a partir de
modelagens intrinseca e extrinseca para a equagao de Schrddinger unidimensional.

3.2 Objetivos Especificos

» Construir modelos moleculares com fungées de onda atdmicas mas sem nucleos
e contendo apenas 1 ou 2 elétrons;

» Estudar o espectro e a distribuicao eletrénica de 1 ou 2 elétrons em regides
geomeétricas distintas;

» Comparar os modelos de confinamento intrinseco e extrinseco.
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4 Metodologia

O confinamento eletrdnico numa dada regido pode ser estudado a partir das
abordagens intrinseca e extrinseca em paticulas nao-interagentes, com isto vem sendo
possivel simular o transporte eletrénico em moléculas e nanoestruturas indicando pos-
sivéis dispositivos a serem sintetizados (DA SILVA; BASTOS; RIBEIRO, 2017).

Adotamos a abordagem intrinseca e a extrinseca de Da Costa para o confina-
mento em curvas. Também realizamos célculos do tipo Hartree-Fock visando a compa-
racdo entre essas modelagens. E possivel montar modelos moleculares com atomos
fantasmas, onde ficam apenas as fung¢des gerando uma fun¢do molecular para a re-
gido delimitada (Fig. 2).
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Figura 2 — Alguns sistemas usados para o confinamento eletrénico.

Ainda nao existe uma deducéo a partir do tratamento de Da Costa para o caso
de particulas confinadas interagentes.

Os calculos computacionais e a construgao das estruturas foi realizada utili-
zando o software Gaussian 09 (FRISCH et al., 2009). Para a montagem das estruturas
escolhidas, os atomos foram distribuidos com distancias de ligacdo de 1,54 A, esta é a
distancia tipica de uma ligagao simples carbono-carbono (artigo basis set 2004). A fun-
cao de onda utilizada para os atomos fantamas foi a 6-311+G(d), bastante adequada
e robusta para os objetivos.
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5 Resultados e Discussao

Consideramos o problema do confinamento de elétrons n&o interagentes em
curvas. Para inicio desse estudo optamos por modelar sistemas lineares, circulares e
similares a parabolas e cubicas. Inicialmente, as estruturas foram construidas através
do Gauss View 5 e em seguida os calculos computacionais foram realizados utilizando
o software Gaussian 09 (FRISCH et al., 2009). O nivel de calculo aplicado foi o Hartree-
Fock 6-311+g(d) em todas as estruturas estudadas.

5.1 Confinamento de 1 elétron

Discutimos nesta secao o confinamento de 1 elétron em algumas abordagens
analiticas e computacional. Este tipo de estudo esta na descrito na literatura e tem
interesse para o entendimento no transporte eletrénico de moléculas e nanoestruturas
(KHAKPOOR, 2016) (SANTOS et al., 2016) (BASTOS; PAVaO; LEANDRO, 2016).

5.1.1 Lineares

Inicialmente consideramos o confinamento eletrénico em sistemas lineares, in-
tervalo de reta. (Fig. 3). Variamos os numeros de centros de 3 a 60.

O L o S SV SV e e s L

(a) Regiao linear com 10 centros. (b) Regido linear com 35 centros.

Figura 3 — Regides do confinamento eletrénico em sistemas lineares.

Nesses sistemas o elétron foi localizado na regido central de cada curva. O
tamanho das retas ndo influenciou nessa tendéncia, embora a distribuicdo de carga
tenha variado a medida que os centros foram adicionados as estruturas (Fig. 5a). Além
disso, a regido de maior intensidade eletronica se encontrou num comprimento 13,9A
a partir de 30 centros. O comportamento apresentado concordou com a abordagem
intrinseca, que prevé o elétron se concentrando na regido central das curvas inde-
pendente de suas geometrias. Nesse caso em especial, a interpretacao através da
perspectiva extrinseca € igual a intrinseca.
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(a) Regiao linear com 10 centros. (b) Regiao linear com 35 centros.

Figura 4 — Distribuicao de carga nos sistemas lineares.

A energia calculada nos sistemas lineares encontrou-se proxima de 1,02 eV
(Fig. 5) a partir de 30 centros (equivalente a 44,66A). Apesar deste valor para a ener-
gia ser superior ao esperado para o modelo intrinseco analitico o comportamento ele-
trénico obtido computacionalmente estd em concordancia. Neste caso, a modelagem
descrita por (DA COSTA, 1981) coincidiu com o modelo intrinseco de confinamento.

Lineares Computacional
—— Lineares Intrinseca

1,2 4

Energia (eV)
Energia (eV)

|I} 2.0 4:0 5’0 8‘0 1 al] |I} 2.0 4:0 5’0 8‘0 1 al]
Comprimento das curvas (A) Comprimento das curvas (A)

(a) Energias computacionais em sistemas line-(b) Energias teodrica intrinseca em sistemas li-
ares no confinamento de 1 elétron. neares no confinamento de 1 elétron.

Figura 5 — Graficos comparativos entre as energias computacional e tedrica intrinseca
em sistemas lineares.

Em sistemas com duas retas conectadas (formando uma geometria similar a
um T) a adigdo dos centros foi realizada de 3 maneiras distintas (Fig. 6): de forma
simétrica onde adicionamos igualmente centros em cada extremidade das retas (TS),
fixando a reta horizontal e adicionando centros apenas na vertical (THF) e por fim
inserindo centros nas pontas da reta horizontal e a vertical permanencendo fixa (TVF).

Em todos os sistemas o elétron se situou na regido entre os angulos de 90°
formados pela interse¢éo das retas. De acordo com esse comportamento poderiamos
afirmar que as extremidades das retas impuseram ao elétron ser encontrado exata-
mente na convergéncia entre elas, assim como ocorre num po¢o de potencial.
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(a) THF com 16 centros. (b) TS com 34 centros. (c) TVF com 28 centros.
Figura 6 — Regides de confinamento em sistemas com geometria em T.
h:*“
’: H.-.-I—.OC-C—O.‘HO—H-..H.-.
: t H-O—l—m-—c—c—o—z—o—m- *oo 900
; E !
f = :
. :
y :
[ ]
s

Figura 7 — Distribuicdo de carga em sistemas com geometria em T.

Supondo que a regiao entre os angulos retos apresentaram a maior curvatura
nessas curvas, os sistemas estariam entdo em concordancia com as interpretacoes

intrinseca e também com a extrinseca adotada (isto sendo verdade apenas para a
suposicao feita).

E quando as retas horizontais sao transladadas para regides mais abaixo nas
retas verticais é possivel observar que as distribuicées eletrénicas ainda apresentam
as mesmas tendéncias. Entdo, para essas geometrias a concentragao de carga esteve
continuamente nos locais em que ha a formagao de angulos de 90° (Fig.8).
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carga nas geometrias em T com a reta horizontal deslo-
cada.
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As energias nos sistemas TS e THF variaram em torno de 0,90 e 0,97eV (Fig.
9) e mostraram praticamente 0 mesmo comportamento grafico. E possivel notar ainda
que a partir de 40A as energias se mantiveram por volta de 0,90eV em ambas geome-
trias. Para os sistemas TVF os espectros variaram entre 0,96 e 0,90eV, e aproximada-
mente a partir de 35A os espectros divergiram em escalas de meV (Fig. 9).

——— TS Computacional —— TS Intrinseca
——— TVF Computacicnal —— TVF Intrinseca
THF Computacional 1,8 THF Intrinseca
1,6
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0,90 41—+ T T T T T 0.2 T T T T T T T T
10 15 20 25 30 35 40 45 50 55 60 65 70 75 ] 10 20 30 40 50 60 70
Comprimento das curvas (A) Comprimento das curvas (A)

(a) Energias computacionais em sistemas line-(b) Energias teotrica intrinseca em sistemas li-
ares com 2 retas conectadas no confina- neares com 2 retas conectadas no confina-
mento de 1 elétron. mento de 1 elétron.

Figura 9 — Graficos comparativos entre as energias computacional e tedrica intrinseca
em sistemas lineares com retas conectadas.

5.1.2 Circulares

Para os sistemas circulares as estruturas foram previamente otimizadas (Fig.
10) e entéo calculadas como as demais curvas.

a
a,
S0 00

(a) Circulo com 10 centros. (b) Circulo com 60 centros.

Figura 10 — Regides do confinamento eletrénico em sistemas circulares.
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Nos sistemas circulares as distribuices de carga foram uniformes ao longo de
toda regido do confinamento (Fig. 11), esse comportamento pode ter sido devido a alta
simetria encontrada nessa geometria. Nesses modelos o comportamento eletronico
observado concordou com as abordagens de confinamento intrinseco e extrinseco

Figura 11 — Distribuicées de carga nos sistemas circulares.

As energias calculadas variaram em escalas de milieV embora os valores te-
nham sido préximos de 1,00eV (Fig. 12a). Enquanto que as energias intrinsecas dimi-
nuiram de 1eV para a ordem de milieV e se comparadas com os espectros intrinsecos
dos sistemas lineares os valores chegam a ser 4 vezes menores (Fig. 12b).

Por essa razdo, o modelo intrinseco de confinamento parece descrever melhor
0s espectros nos modelos circulares, visto que nesses sistemas as energias precisa-
riam diminuir com 0 aumento dos comprimentos das curvas.
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(a) Energias computacionais em sistemas cir-(b) Energias teérica intrinseca em sistemas cir-
culares no confinamento de 1 elétron. culares no confinamento de 1 elétron.

Figura 12 — Graficos comparativos entre as energias computacional e teoérica intrin-
seca em sistemas lineares com retas conectadas.



Capitulo 5. Resultados e Discussao 27

5.1.3 Similares a parabdlas

Para a construcéo dos sistemas similares aos parabdlicos; aqui iremos tratar
apenas como parabolas para simplificar a discussao, duas interfaces distintas foram
adotadas. A primeira apresentando uma geometria mais suave (PS) (Fig.13a), en-
quanto a segunda assemelha-se a um ima (PR) (Fig.13b).
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(a) Parabdlas suave com 34 centros. (b) Parabdlas reta com 55 centros.

Figura 13 — Regides do confinamento eletrénico em sistemas parabdlicos.

Nos modelos de PS o elétron foi detectado na regido de maior curvatura nas
curvas (area de maior intensidade em vermelho) (Fig.14). A partir de 20 centros a
variacao das distribuicées de carga se mantiveram no que correspondeu a regiao em
torno do comprimento de 13,86A a 16,94A.

(a) Regido parabolica suave com 16 centros. (b) Regido parabdlica suave com 34 centros.

Figura 14 — Distribuicao de carga para os sistemas parabdlicos suaves.

As distribuicbes de carga nas séries parabdlicas suaves se mostraram analo-
gas aos sistemas lineares. Foi visto que independente do aumento dos comprimentos
das estruturas a concentragao das cargas permaneceram na regiao central, que tam-
bém € a de maior curvatura dos modelos. Dessa forma, o comportamento eletrénico
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concordou tanto com a abordagem intrinseca quanto com a relatada por (DA COSTA,
1981).

—— Parabola Suave Intrinseca
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(a) Gréfico das energias computacionais no (b) Grafico das energias tebrica intrinseca no
confinamento de 1 elétron em pardbolas su-  confinamento de 1 elétron em parabolas su-
aves. aves.

Figura 15 — Graficos comparativos entre as energias computacional e teoérica intrin-
seca.

As energias computacionais se mantiveram préximas de 1,0235eV a partir
de 20 centros correpondendo ao comprimento de 29,26A (Fig.15a). Considerando a
curva com 20 centros, apenas 7 deles conseguiram localizar a carga do elétron, nesse
caso as energias no modelo intrinseco tedrico seriam 0,4396eV (Fig. 15b).

Embora este valor tenha sido menor que o obtido computacionalmente € maior
que o previsto por (DA COSTA, 1981). Além disso, os espectros computacional e in-
trinseco tedrico nestes modelos foram analogos aos sistemas lineares em ambas as
abordagens (Fig. 16).

Nas parabolas retas, o elétron foi localizado nas regides lineares das estruturas
onde a curvatura é igual a 0. Neste caso, as distribuicdes de carga se intensificaram
nas regides flat correspondendo as regides entre 7,7A e 29,26A de acordo com o
aumento dos centros nas curvas (Fig. 17). O comportamento eletrénico observado se
aproximou da modelagem intrinseca, uma vez que o elétron se posicionou na regiao
central das retas. Assim, nestes sistemas a abordagem descrita por Da Costa ndo se
aplicou.

Os espectros computacionais oscilaram entre 1,25eV e 0,84eV até as estrutu-
ras de comprimento de 36,96A e a partir de 45A (correspondente a 30 centros) as
energias variaram em escala de meV e apresentaram uma média em torno de 0,8187
eV (Fig. 18a). Enquanto as energias intrinseca diminuiram de 4eV para a grandeza
de meV por volta de 20A em diante, ao passo que os comprimentos dos modelos
aumentavam (Fig. 18Db).
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(a) Espectros computacionais dos sistemas li-(b) Espectros tedrico intrinseco dos sistemas li-
neares e das PS. neares e das PS.

Figura 16 — Graficos comparativo entre as energias computacional e intrinseca tedrica
entre os sistemas lineares e parabdlicos suave.
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(a) Regiao parabdlica reta com 25 centros. (b) Regiao parabdlica reta com 55 centros.

Figura 17 — Distribuigdo de carga em sistemas parabdlicos retos no confinamento de
1 elétron.

5.1.4 Lineares com curvas

Finalmente, nos sistemas lineares com curvas assim como nos parabdlicos
foram escolhidas duas formas de montagem das estruturas: 1. fixando as pontas
e variando os atomos no meio (LCM) (Fig.19a) e 2. fixando os atomos centrais e
adicionando-os as pontas (LCP) (Fig. 19b).

Assim, para as estruturas lineares com curvas em que os centros foram adicio-
nados ao meio a densidade eletrénica se localizou nas regidées curvas independente
do comprimento (Fig. 20a). Para os modelos até 20 centros as distribuicdes de carga
se espalharam ao redor da curva 1 (a esquerda), esse comportamento € ainda mais
evidenciado para as estruturas de maior extensao (Fig. 20b).
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Figura 18 — Graficos comparativos entre as energias computacional e teorica intrin-
seca em parabolas retas.
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(a) LCM com 30 centros. (b) LCP com 30 centros.

Figura 19 — Regides do confinamento eletrénico em sistemas lineares com curvas.

De acordo com as abordagens que desejamos comparar, esse modelo nao
enquadrou-se em nenhuma, uma vez que através da perspectiva extrinseca apresen-
tada por (DA COSTA, 1981) as cargas deveriam estar distribuidas igualmente entre
as regides de maior curvatura. Enquanto que no tratamento intrinseco o elétron se
localizaria na metade das curvas independente da geometria adotada.

A partir de 21 centros (correspondente a um comprimento de 30,8A) as ener-
gias computacionais se mantiveram proximas de 0,98eV, embora tenham oscilado em
escalas de meV (Fig. 21a). Os espectros intrinseco tedrico decresceram de 0,101eV
nos modelos de menor proporcéo a faixas de meV nas estruturas acima de 30A (Fig.
21b). Entdo, com 0 aumento dos comprimentos das nanoestruturas o comportamento
energético observado seria ainda mais destacado.

Nos modelos lineares com curvas em que os centros foram adicionados nas
pontas, o elétron se comportou similarmente aos modelos com geometria em T. No
qual as pontas atuaram como indutoras de um poco de potencial na regido central
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(a) Regiao LCM com 20 centros. (b) Regiao LCM com 30 centros.

Figura 20 — DistribuicOes de cargas em sistemas lineares com curvas no meio no con-
finamento de 1 elétron.
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ares com curvas meio no confinamento de neares com curvas meio no confinamento
1 elétron. de 1 elétron.

Figura 21 — Graficos comparativos entre as energias computacional e teoérica intrin-
seca em sistemas lineares com curvas meio.

dessas estruturas (Fig. 22). As distribuicbes de carga permaneceram na mesma re-
gido (considerando os 5 4tomos centrais que se referem ao tamanho de 6,16A) inde-
pendentemente dos comprimentos das nanoestruturas. Portanto, nesses sistemas o
tamanho das estruturas nao foi fator determinante da concentracao eletronica.

Os sistemas estudados acima adequaram-se aos tratamentos intrinseco e ex-
trinseco, visto que o elétron se encontrou na regido central das geometrias como indica
o primeiro modelo de confinamento e também na localidade de maior curvatura devido
ao potencial gerado pelas pontas das estruturas, concordando com a modelagem ex-
trinseca.

Os espectros computacionais nestes sistemas assim como nos anteriores se
encontraram em torno de 0,940eV variando em escalas de meV (Fig. 23a) conforme
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(a) LCP com 20 centros. (b) LCP com 30 centros.

Figura 22 — DistribuicOes de carga em sistemas lineares com curvas ponta.

os centros das moléculas aumentava mas permancendo em toda a série calculada na
faixa de 0,9eV. Por outro lado, as energias intrinsecas tedérica cairam ligeiramente de

0,101eV a regido de 0,019eV com o aumento dos comprimentos das estruturas (Fig.
23Db).

Considerando apenas a regido de maior intensidade (equivalente a 6,16A), as

energias computacional e intrinseca tedrica corresponderiam a 0,94eV e aproximada-
mente 0,98eV, respectivamente.
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(a) Energias computacionais nos sistemas line-(b) Energias intrinsecas tetrica nos sistemas li-
ares com curvas ponta. neare com curvas ponta.

Figura 23 — Graficos comparativos entre as energias computacional e teorica intrin-
seca em sistemas lineares com curvas ponta.
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5.2 Confinamento de 2 elétrons

Nesta secéo foi abordado o confinamento eletrénico para 2 elétrons n&o intera-
gentes, com a finalidade de estudar o comportamento eletrdnico e as energias compu-
tacionais nos mesmos sistemas vistos na se¢ao 5.1. Neste modelo de confinamento
os resultados se mostraram analogos em todas as estruturas estudadas.

5.2.1 Lineares

Analisamos o confinamento eletrénico de 2 elétrons para os mesmos sistemas
utilizados na secao 5.1.

Nos modelos lineares as distribuicoes de carga dos elétrons se localizaram nos
centros em cada extremidade da geometria, desde as estruturas de menor compri-
mento até as maiores. O comportamento eletrénico observado foi identico para todas
as moléculas (Fig. 24 ).

* 00000000

Figura 24 — Distribuic6es de carga no confinamento de 2 elétrons em sistemas linea-
res.

As energias computacionais variaram de 6,88eV a 3,10eV a medida que os
tamanhos das moléculas aumentavam, de forma que as estruturas menores foram
mais energéticas do que as maiores. Embora a queda energética tenha ocorrido rapi-
damente, a partir de 60A as energias variaram na faixa em torno de 0,1ev, e nessa
escala é possivel encontrar a formacao de ligagdes quimicas (Fig 25).
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Figura 25 — Grafico das energias computacionais nos sistemas lineares para o confi-
namento de 2 elétrons.

Para os sistemas lineares com retas conectadas as distribuicées de carga fo-
ram similares em todos os modelos (assim como no confinamento para 1 elétron), mas
neste modelo de confinamento os elétrons foram localizados nos atomos das extremi-
dades de cada reta (Fig. 26). Portanto, estes modelos se comportaram analogamente
a geometria anterior, visto que os elétrons se localizaram na regido de maior distancia
possivel entre eles.
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(a) THF com 16 centros . (b) TVF com 28 centros. (c) TS com 34 centros.

Figura 26 — Distribuic6es de carga em sistemas lineares com retas conectadas para o
confinamento de 2 elétrons.

As energias computacionais nos sistemas TS e nos TVF assim como nas geo-
metrias anteriores apresentaram variacoes gradativas em escalas de 1eV nas estrutu-
ras menores, no entanto a partir de 40A as energias oscilaram na faixa de 0,1eV nas
quais mantiveram-se préximas de 3,75eV. Nos modelos THF os espectros exibiram
0 mesmo comportamento grafico das geometrias em TS e TVF, porém mantendo as
energias na regiéo de 4eV a partir dos comprimentos entre 20A a 35A (Fig. 27).
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Figura 27 — Grafico das energias computacionais nos sistemas lineares com geome-
tria T para o confinamento de 2 elétrons.

5.2.2  Circulares

Nos modelos circulares as densidades eletrénicas foram uniformes em todos
0s centros das curvas, assim como no confinamento de 1 elétron. Podemos afirmar
que os elétrons poderiam estar dispostos igualmente por toda a regido confinante
independente dos comprimentos empregados as circunferéncias (Fig. 29).

Figura 28 — Distribuicdo de carga em sistemas circulares no confinamento de 2 elé-
trons.

Assim como nos modelos anteriores 0s espectros computacionais nesta geo-
metria variaram ligeiramente na regiao entre 6,0eV a 3,4eV descrevendo o grafico de
uma fung¢ao do primeiro grau.

5.2.3 Similares aos Parabdlicos

Nos sistemas parabdlicos suaves os elétrons se localizaram na regiao de maior
distancia possivel entre eles (Fig. 30a). Por outro lado, nas parabolas retas as cargas
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Figura 29 — Grafico das energias computacionais nos sistemas circulares para o con-
finamento de 2 elétrons.

dos elétrons se concentraram a 6,74A uma da outra (Fig. 30b), mesmo com o aumento
nos comprimentos da geometria.

R,

(a) Parabola suave com 16 centros. (b) Parabola reta com 15 centros.

Figura 30 — Distribuicées de carga em sistemas similares aos parabolicos no confina-
mento de 2 elétrons.

As energias computacionais em ambas as geometrias apresentaram queda
conforme os centros foram sendo adicionados aos modelos. Nas parabolas suaves a
diminuic&o nos espectros esteve entre 6,43eV a 3,66eV, e a partir de 40A as energias
situaram-se no entorno de 3,5eV. No caso das pardbolas retas foi visto que os es-
pectros localizaram-se préximos de 6,89eV a 3,18eV de forma analoga as parabolas
suaves, o comportamento grafico exibido em ambos os modelos foram correlatos e
equivalentes a fungéo exponencial (Fig.31).
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Figura 31 — Grafico das energias computacionais nos sistemas similares aos parabé-
licos no confinamento de 2 elétrons.

5.2.4 Lineares com curvas

Analogas aos sistemas ja descritos anteriormente, as distribuicbes de carga
das linhas com curvas, os elétrons se encontraram nas regides extremas das estrutu-
ras desses modelos. Nas LCM as densidades eletrdnicas variaram moderadamente,
de modo que parte delas foram conduzidas para a regiao de maior curvatura. E ape-
sar disso, os centros das extremidades ainda apresentaram a maior concentracao de

carga (Fig. 32a).
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(a) LCM com 30 centros. (b) LCP com 30 centros.

Figura 32 — Distribuic6es de carga em sistemas lineares com curvas no confinamento
de 2 elétrons.

Os sistemas de LCP também exibiram densidades eletronicas na regido de
maior distancia entre os elétrons, semelhante ao comportamento descrito pelos siste-
mas anteriores. As distribuicdes de carga se concentraram nos centros situados nas
extremidades dos sistemas (Fig. 32b).

Os espectros computacionais nos dois sistemas lineares com curvas apresen-
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taram comportamentos graficos praticamente equivalentes, descrevendo uma funcao
linear. As energias variaram nos modelos LCM em torno de 4,73A a 3,69A a medida
que as curvas ampliavam, enquanto que para os sistemas LCP os espectros oscilaram
entre 4,69A a 3,72A. Entao, as variagbes energéticas apresentadas nestes sistemas
foram entre escalas de 0,1eV e 0,01eV sendo uma das excecdes se comparadas com
as faixas espectrais das geometrias anteriores para o confinamento de 2 elétrons (Fig.
33).

Lineares com curvas Computacional (Meio)
Lineares com curvas Computacional (Ponta)
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Figura 33 — Grafico das energias computacionais em sistemas lineares com curvas no
confinamento de 2 elétrons.

As distribuicbes de cargas previstas pelas modelagens de Da Costa e pela
intrinseca ndo puderam ser confirmadas através no confinamento de 2 elétrons em
atomos fantasmas, uma vez que em todas as geometrias os elétrons buscaram per-
manecer 0 mais distante possivel uns dos outros, com exce¢ao apenas dos sistemas
circulares e dos parabdlicos retos.

Portanto, o confinamento eletrénico de 2 particulas demonstraram que o com-
portamento grafico para todos os sistemas foi analogo, com ressalvas apenas para os
sistemas circulares que apresentaram linearidade tanto no confinamento de 1 elétron
quanto no de 2 elétrons. Novak (NOVAK, 2001) demonstrou que os fermions (neste tra-
balho em particular usamos os elétrons) se afastam uns dos outros em consequéncia
de limitagoes impostas nas fungdes de onda das particulas, além da repulsdo Coulom-
bica também ter contribuido com a repulsao eletrdnica nestes sistemas.
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6 Consideracoes Finais

Analisamos uma série de curvas correspondentes a hanoestruturas no confina-
mento eletrénico. Estudamos o comportamento eletrénico através das distribuicdes de
cargas e suas energias relacionadas. Foram verificados padrdes em alguns dos siste-
mas simulados computacionalmente em acordo com o0 modelo intrinseco analitico e
também com o previsto por Da Costa, especialmente nas distribuicdes de carga dos
elétrons nas nanoestruturas.

As distribuicbes de carga no confinamento de 1 elétron se localizaram na re-
gidao central das estruturas lineares, parabdlicas suaves e lineares com curvas na
ponta. Em todos esses sistemas o comportamento previsto pelo modelo analitico in-
trinseco foi confirmado. Nos sistemas parabdlicos suaves e lineares com curvas na
ponta também foi verificado o comportamento descrito pela modelagem extrinseca.
Nos modelos lineares com curvas no meio as distribuicbes de carga divergiram em
ambas abordagens, neste caso o elétron se concentrou somente em uma das curvas.

No caso do confinamento de 2 elétrons, as distribuicdes de carga em todos
os sistemas foram analogas: concentraram-se nas regides de maior distancia entre
as particulas. Seria possivel afirmar entdo que esse efeito foi resultante da repulsao
eletrbnica existente em sistemas multieletrénicos, além de estar atrelado a limites exi-
gidos através das funcdes de onda na equacao de Schrédinger. Os modelos circulares
e parabdlicos retos foram as excecdes desse padrao comportamental, indicaram que
as cargas poderiam se concentrar em todos 0s centros nas curvas dos modelos cir-
culares e numa distancia de 6,74A entre os elétrons nos sistemas parabdlicos retos.
Nesses casos a abordagem prevista por Da Costa nao se aplicou a nenhum desses
sistemas e a modelagem intrinseca descreve apenas os sistemas circulares.

As energias computacionais no confinamento de 1 elétron foram préximas de
1 eV com oscilagcdes em escalas de 0,1eV para os sistemas lineares e parabdlicos,
enquanto que para os demais modelos a variagdo esteve na propor¢ao de 0,01 eV. E
embora aparente ser uma pequena variacao, a escala de 0,1 eV pode indicar fen6me-
nos tipicos de ligagées quimicas. Por outro lado, no caso do confinamento de 2 elé-
trons, as energias calculadas em todos os sistemas foram reduzindo gradativamente
conforme o comprimento das estruturas aumentava. Os valores foram entre 6,0eV a
3,5eV. Apesar dos modelos estudados serem simples é possivel encontrar potenciais
aplicagbes praticas: o uso de nanoestruturas 1D como meio de otimizacdo do trans-
porte eletrénico além do envelopamento de fotocatalizadores.
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