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Resumo
Percebendo a diversidade de uso das nanoestruturas em gerar compostos com ge-
ometrias diversificadas e bem precisas, fazer uso de abordagens que incluam com-
ponentes de geometria diferencial parece um caminho razoável. Por essa ótica, em-
pregamos o confinamento eletrônico em nanoestruturas através das abordagens com-
putacional, intrínseca e extrínseca, pelos quais permitem estudos preliminares no de-
senvolvimento de novos dispositivos eletrônicos de maior sofisticação. Este trabalho,
portanto, busca estudar o confinamento de 1 e 2 elétrons em estruturas unidimensio-
nais (lineares, circulares, lineares com curvas e similares a parábolas), analisar seus
espectros energéticos, as distribuições de carga a partir de simulações computacio-
nais e compará-los com modelos teóricos. Apresentamos resultados de distribuição
de cargas que demonstraram ser adequados aos modelos teóricos.

Palavras-chave: confinamento eletrônico, geometria diferencial, nanoestruturas.



Abstract
Realizing about diversity of nanostructures use in generating compounds with diversi-
fied and very precise geometries, making use of approaches that include differential
geometry components seems a reasonable path. From this perspective, we employ
electronic confinement in nanostructures through computational, intrinsic and extrinsic
approaches, which allow preliminary studies in the development of new electronic de-
vices of greater sophistication. This work, therefore, seeks to study the confinement of
1 and 2 electrons in one-dimensional structures (linear, circular, linear with curves and
similar to paraboles), analyze their energy spectra, charge distributions from computer
simulations and compare them with theoretical models. We present load distribution
results that proved to be adequate for theoretical models.

Keywords: electronic confinement, differential geometry, nanostructures.
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1 Introdução

Nanoestruturas são compostos que podem ser definidos por apresentarem me-
didas em ordem nanométrica (10−9). No campo da Química as estruturas mais pes-
quisadas são os nanotubos de carbono, nanocristais, quantum dots, nanocapsúlas
e os dendrímeros (CARVALHO; REIS; OLIVEIRA, 2020), devido ao conjunto variado
de propriedades físico-químicas e diversidade em suas aplicações. Destas, ainda é
provável obter compostos 1D que apresentem alto potencial de confinamento eletrô-
nico, além da versatilidade em coordenar propriedades elétricas, magnéticas e ópticas,
como nanofios de selênio (XIA et al., 2003), nanocristais de silício (EKONG; OSIELE,
2016), etc. Esses nanomateriais apresentam diversas aplicações, que partem dos dis-
positivos eletrônicos e vão até a medicina e o desenvolvimento de medicamentos (BA-
RANWAL et al., 2018). Então, o estudo de modelos que assemelhem-se a estes pode
contribuir na compreensão dessa categoria de materiais.

O estudo do confinamento eletrônico em nanoestruturas através da geometria
diferencial tornou-se alvo do interesse de pesquisadores, possibilitando o desenvolvi-
mento de novos instrumentos de estudo de sistemas quânticos. Modelagens compu-
tacionais atreladas à geometria diferencial parecem ser relevantes para estabelecer
relações entre a química computacional e a matemática. Particularidades das nano-
estruturas podem ser associadas à cálculos computacionais característicos a estas
estruturas (KHAKPOOR, 2016) e com a geometria diferencial de curvas. Os espectros
energéticos e informações relacionadas podem ser estudados a partir da equação de
Schrödinger, um dos provavéis tratamentos é o que se refere à modelagem do opera-
dor Hamiltoniano. Na abordagem mais trivial o hamiltoniano é construído desvinculado
do ambiente no entorno. Em contrapartida, a abordagem extrínseca considera a região
nas adjacências do sistema, neste caso o hamiltoniano depende diretamente da curva-
tura associada (DA SILVA; BASTOS; RIBEIRO, 2017). Cálculos do tipo Hartree-Fock
se mostraram precisos no estudo das distribuições eletrônicas nos sistemas físicos
adotados. Estudamos sistemas quânticos inclusos no espaço 1D (DA COSTA, 1981)
no confinamento de 1 e 2 elétrons.

Na primeira seção deste trabalho foi investigado o comportamento eletrônico de
uma série de curvas similares a nanoestruturas através das perspectivas intrínseca
e extrínseca para o confinamento de 1 elétron, e na segunda seção estudamos as
mesmas abordagens para o confinamento de 2 elétrons.
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2 Fundamentação Teórica

2.1 Fundamentos de geometria diferencial
Nesta seção iremos abordar os principais elementos de geometria diferencial.

De modo geral, iremos verificar o estudo de curvas descritas por funções diferenciá-
veis sem o rigor de suas definições (CARMO, 2016).

2.1.1 Curvas

Seja uma curva parametrizada β : I → R3, onde

t ∈ I 7→ β(t) = (x(t), y(t), z(t)) ∈ R3

neste exemplo a variável t é designada como o parâmetro da curva.

Uma forma de determinar essa curva é através de seu vetor velocidade β̇(t),
sendo tangente a curva e a β̈(t) temos o vetor aceleração. E a equação sendo deno-
tada por: β(t) = (A cos(t), A sen(t), 0).

Figura 1 – Vetor velocidade (β̇) e aceleração (β̈) em um círculo.

Além dessa interpretação, poderíamos parametrizar a curva novamente da se-
guinte forma:

~β(s) = A (cos (s/A), sen (s/A), 0)

Partindo do mesmo pressuposto da parametrização anterior, então teríamos que:

~̇β(s) = (−sen (s/A), cos (s/A), 0),

~̈β(s) = −1/A(cos (s/A), sen (s/A), 0).
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Através dessa parametrização a norma desses vetores é:

‖~̇β(s)‖ =
√
−sen2(s/A) + cos2(s/A) = 1,

‖~̈β(s)‖ = −1/A
√
cos2 (s/A) + sen2 (s/A) = −1/A.

Portanto, o vetor velocidade ‖~̇β(s)‖ é unitário. Assim, podemos dizer que a
curva é parametrizada por comprimento de arco (p.c.a).

κ(s) = ‖~̈β(s)‖

Desta forma, somos apresentados ao conceito de curvatura, como sendo a va-
riação da direção do vetor tangente, ou seja, ela mede o quão uma curva se distingue
de uma reta (uma vez que a curvatura da reta é nula) através do seu vetor tangente.

2.2 Mecânica Quântica
A equação de Schrödinger é usada para descrever sistemas microscópicos

(SCHRODINGER, 1926), sua forma geral, independente do tempo e unidimensional é

Ĥψ(x) = Eψ(x) (2.1)

onde Ĥ é o operador Hamiltoniano, (Ψ) é a função de onda e E é o espectro
do sistema (GRIFFITHS, 2018). O Hamiltoniano também pode ser escrito como

Ĥ = T + V (2.2)

sendo T a energia cinética do sistema e V a energia potencial. O confinamento
de uma partícula é em geral a restrição espacial para seu deslocamento, com ou sem
a ação de um campo externo. Assim, uma partícula livre teria seu Hamiltoniano e
consequentemente o espectro reduzido à energia cinética.

Diferentes tratamentos geométricos podem levar à diferentes hamiltonianos de
confinamento, o que em princípio evidencia o problema em qual escolha devemos
fazer para a modelagem do confinamento (DA SILVA; BASTOS; RIBEIRO, 2017). As
abordagens geométricas podem ser intrínseca ou extrínseca. A abordagem intrínseca
impõe que existe apenas a região espacial de confinamento não precisando fazer
referência a nenhum tipo de força ou potencial de confinamento, como ainda é comum
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nos livros didáticos. O hamiltoniano neste caso é puramento cinético, considerando a
região unidimensional como uma curva suave ele é dado por

Hi = − h̄
2

2µ
d2

ds2 (2.3)

onde h̄ é a constante de reduzida Planck, µ é a massa real da partícula e s é o com-
primento de arco.

Nas abordagens extrínsecas além da região de confinamento se considera o
ambiente a qual está imersa. Neste caso é necessário a força externa para simular a
restrição da partícula nesta região que, dependendo da forma do potencial de confina-
mento, resulta em diferentes hamiltonianos contendo um potencial geométrico além do
termo cinético. Um tratamento bastante utilizado é o de Da Costa em que ele faz uso
de um potencial quadrático para o confinamento, resultando no seguinte hamiltoniano

Hdcc = − h̄
2

2µ
d2

ds2 −
h̄2

8µκ(s)2 (2.4)

onde, s é o parâmetro de comprimento de arco da curva e κ(s) é a curvatura
da curva.

2.3 Teoria do Orbital Molecular
Nesta seção iremos abordar os conceitos da teoria do orbital molecular. Usando

métodos desenvolvidos na mecânica quântica, foi possível desenvolver a teoria dos
orbitais moleculares (MO) sendo uma alternativa de visualizar ligações em moléculas,
obter energias e funções de onda (BALLHAUSEN, 1965).

2.3.1 Método de Hartree-Fock-Roothaan

Por volta da metade do século XX, foi introduzido por Hartree o método do
campo autoconsistente para o cálculo aproximado de funções de onda e de energias
para átomos e moléculas. O método se baseia da seguinte forma: não serão conside-
radas todas as interações simultâneas entre os elétrons do sistema, supondo que o
potencial que atua nos elétrons se origina 1) dos núcleos e 2) da distribuição de carga
média sobre os demais elétrons (LEVINE, 2000).

Para os átomos que apresentam camada de valência fechadas essa distribui-
ção é esférica, e o modelo que melhor se aplica é o de campo médio, assim um
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campo atuando sobre um elétron em ~ri, é dependente da distribuição de carga média
dos outros elétrons que possuem a seguinte forma:

Vrepulsão(~ri) =
∫

Ψ∗ 1
rij

Ψdτ (2.5)

isto é, o campo está definido em termos de autofunção, esta sendo a própria variável.
O problema tem como solução um método correspondente: defini-se uma distribuição
eletrônica predeterminada que seja possível calcular o potencial aproximado, então
monta-se o Hamiltoniano aproximado e por fim temos as soluções. O desempenho
da nova Ψ(r) é aparentemente melhor que a primeira; o campo criado a partir dela
resulta no atual hamiltoniano cujas soluções originam o novo campo, esse processo se
repete até que o campo seja autoconsistente, ou seja, o potencial calculado em duas
interações consecutivas precisa ser constante dentro dos limites pré determinados.

Assim, a Ψ(r) para cada elétron num sistema com N elétrons é:

Ψ(r) = Ψ1(r1)Ψ2(r2)Ψ3(r3)Ψ4(r4) =
N∑
i

Ψi(ri) (2.6)

Esse produto é conhecido por produto de Hartree, usando a Eq. 2.6 na equação
de Schödinger é possível separar em N equações independentes para cada elétron
do sistema.

Em anos posteriores do mesmo século, Slater e Fock autonomamente mostra-
ram que o método de Hartree apresentava inconsistências e não levava em considera-
ção o princípio da antissimetria da função de onda. No método de Hartree foi utilizado
o princípio da exclusão de Pauli, na sua antiga versão que proibia a existência de dois
elétrons compartilhando o mesmo estado quântico. Desse modo, no lugar de orbitais
espaciais Slater e Fock usaram combinação linear antissimetrica para a obtenção dos
spin-orbitais, essa análise foi realizada através do determinante de Slater. A teoria do
campo auto-consistente que faz uso da antissimetria do spin-orbital é chamada de
cálculo de Hartree-Fock.

A equação diferencial para encontrar os orbitais de Hartree-Fock tem a seguinte
forma:

[
− h̄2

2µe
52
i +Vi(ri)

]
ui = εiui (2.7)

onde ui é o enésimo spin-orbital o hamiltoniano acima é conhecido como o operador
de Fock ou Hartree-Fock e seu autovalor εi é a energia do orbital do spin-orbital i e µe
é a massa do elétron.



Capítulo 2. Fundamentação Teórica 18

Em meados de 1951, Roothaan propôs que as funções que representavam os
orbitais moleculares conseguiriam ser adquiridas em termos de funções que pudes-
sem representar os orbitais atômicos (ROOTHAAN, 1951). Levando em consideração
que orbitais atômicos em sistemas polieletrônicos são funções aproximadas, a mesma
concepção poderia ser aplicada para construção dos orbitais a partir de funções ma-
temáticas que admitissem computacionalmente cálculos de propriedades atômicas e
moleculares com alto nível de precisão. O método descrito se popularizou como o mé-
todo de combinação linear de orbitais atômicos (Linear Combination of Atomic Orbitals-
LCAO).

2.3.2 Conjunto de Base

Roothaan e Hall reformularam as equações de Hartree e Fock com o intuito de
obter soluções numéricas. O método consiste em introduzir um conjunto de funções
de base normalizadas na equação Hartree-Fock. Para expandir a parte espacial dos
spin-orbitais. O problema então fica resumido a uma mera diagonalização matricial. A
forma espacial dos orbitais pode ser representada por uma combinação linear de K
funções de base monoeletrônicas, como segue:

A remodelagem feita por Roothaan e Hall nas equações de Hartree-Fock ti-
nham a finalidade de obter soluções numéricas. O método se fundamenta em inserir
um conjunto de funções de base normalizadas no operador de Hartree-Fock, com a
finalidade de expandir o termo espacial dos spin-orbitais, então, o problema se resume
a uma simples diagonalização matricial. É possível representar a geometria espacial
dos orbitais através de uma combinação linear de K funções de base monoeletrônicas
como:

φp(r) =
K∑
v−i

CvpGv(r) (2.8)

onde, K é o número de funções do conjunto e os Cvp são coeficientes a serem
determinados ou simplesmente os coeficientes dos orbitais moleculares.

Como a função de onda é capaz de ser representada por uma combinação
linearmente independente de K funções de base compõem a função de onda total,
então temos que a equação de Hartree-Fock é:

∑
v

FµvCvp = εp
∑
v

SµvCvp (2.9)

A partir das definições anteriormente determinadas, Pople (1981) desenvolveu
uma nova categoria de funções de base conhecidas por funções de polarização, sendo
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elas a 6-31G e 6-311G. Estas são Gaussianas de segunda ordem para compostos não
hidrogenados.
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3 Objetivos

3.1 Objetivo Geral
Estudar o confinamento eletrônico em moléculas e nanoestruturas a partir de

modelagens intrínseca e extrínseca para a equação de Schrödinger unidimensional.

3.2 Objetivos Específicos

• Construir modelos moleculares com funções de onda atômicas mas sem núcleos
e contendo apenas 1 ou 2 elétrons;

• Estudar o espectro e a distribuição eletrônica de 1 ou 2 elétrons em regiões
geométricas distintas;

• Comparar os modelos de confinamento intrínseco e extrínseco.
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4 Metodologia

O confinamento eletrônico numa dada região pode ser estudado a partir das
abordagens intrínseca e extrínseca em patículas não-interagentes, com isto vem sendo
possível simular o transporte eletrônico em moléculas e nanoestruturas indicando pos-
sivéis dispositivos a serem sintetizados (DA SILVA; BASTOS; RIBEIRO, 2017).

Adotamos a abordagem intrínseca e a extrínseca de Da Costa para o confina-
mento em curvas. Também realizamos cálculos do tipo Hartree-Fock visando a compa-
ração entre essas modelagens. É possível montar modelos moleculares com átomos
fantasmas, onde ficam apenas as funções gerando uma função molecular para a re-
gião delimitada (Fig. 2).

Figura 2 – Alguns sistemas usados para o confinamento eletrônico.

Ainda não existe uma dedução a partir do tratamento de Da Costa para o caso
de partículas confinadas interagentes.

Os cálculos computacionais e a construção das estruturas foi realizada utili-
zando o software Gaussian 09 (FRISCH et al., 2009). Para a montagem das estruturas
escolhidas, os átomos foram distribuídos com distâncias de ligação de 1,54 Å, esta é a
distância típica de uma ligação simples carbono-carbono (artigo basis set 2004). A fun-
ção de onda utilizada para os átomos fantamas foi a 6-311+G(d), bastante adequada
e robusta para os objetivos.
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5 Resultados e Discussão

Consideramos o problema do confinamento de elétrons não interagentes em
curvas. Para início desse estudo optamos por modelar sistemas lineares, circulares e
similares a parábolas e cúbicas. Inicialmente, as estruturas foram construídas através
do Gauss View 5 e em seguida os cálculos computacionais foram realizados utilizando
o software Gaussian 09 (FRISCH et al., 2009). O nível de cálculo aplicado foi o Hartree-
Fock 6-311+g(d) em todas as estruturas estudadas.

5.1 Confinamento de 1 elétron
Discutimos nesta seção o confinamento de 1 elétron em algumas abordagens

analíticas e computacional. Este tipo de estudo está na descrito na literatura e tem
interesse para o entendimento no transporte eletrônico de moléculas e nanoestruturas
(KHAKPOOR, 2016) (SANTOS et al., 2016) (BASTOS; PAVãO; LEANDRO, 2016).

5.1.1 Lineares

Inicialmente consideramos o confinamento eletrônico em sistemas lineares, in-
tervalo de reta. (Fig. 3). Variamos os números de centros de 3 à 60.

(a) Região linear com 10 centros. (b) Região linear com 35 centros.

Figura 3 – Regiões do confinamento eletrônico em sistemas lineares.

Nesses sistemas o elétron foi localizado na região central de cada curva. O
tamanho das retas não influenciou nessa tendência, embora a distribuição de carga
tenha variado a medida que os centros foram adicionados às estruturas (Fig. 5a). Além
disso, a região de maior intensidade eletrônica se encontrou num comprimento 13,9Å
a partir de 30 centros. O comportamento apresentado concordou com a abordagem
intrínseca, que prevê o elétron se concentrando na região central das curvas inde-
pendente de suas geometrias. Nesse caso em especial, a interpretação através da
perspectiva extrínseca é igual a intrínseca.
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(a) Região linear com 10 centros. (b) Região linear com 35 centros.

Figura 4 – Distribuição de carga nos sistemas lineares.

A energia calculada nos sistemas lineares encontrou-se próxima de 1,02 eV
(Fig. 5 ) a partir de 30 centros (equivalente à 44,66Å). Apesar deste valor para a ener-
gia ser superior ao esperado para o modelo intrínseco analítico o comportamento ele-
trônico obtido computacionalmente está em concordância. Neste caso, a modelagem
descrita por (DA COSTA, 1981) coincidiu com o modelo intrínseco de confinamento.

(a) Energias computacionais em sistemas line-
ares no confinamento de 1 elétron.

(b) Energias teórica intrínseca em sistemas li-
neares no confinamento de 1 elétron.

Figura 5 – Gráficos comparativos entre as energias computacional e teórica intrínseca
em sistemas lineares.

Em sistemas com duas retas conectadas (formando uma geometria similar a
um T) a adição dos centros foi realizada de 3 maneiras distintas (Fig. 6): de forma
simétrica onde adicionamos igualmente centros em cada extremidade das retas (TS),
fixando a reta horizontal e adicionando centros apenas na vertical (THF) e por fim
inserindo centros nas pontas da reta horizontal e a vertical permanencendo fixa (TVF).

Em todos os sistemas o elétron se situou na região entre os ângulos de 90º
formados pela interseção das retas. De acordo com esse comportamento poderíamos
afirmar que as extremidades das retas impuseram ao elétron ser encontrado exata-
mente na convergência entre elas, assim como ocorre num poço de potencial.
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(a) THF com 16 centros. (b) TS com 34 centros. (c) TVF com 28 centros.

Figura 6 – Regiões de confinamento em sistemas com geometria em T.

Figura 7 – Distribuição de carga em sistemas com geometria em T.

Supondo que a região entre os ângulos retos apresentaram a maior curvatura
nessas curvas, os sistemas estariam então em concordância com as interpretações
intrínseca e também com a extrínseca adotada (isto sendo verdade apenas para a
suposição feita).

E quando as retas horizontais são transladadas para regiões mais abaixo nas
retas verticais é possível observar que as distribuições eletrônicas ainda apresentam
as mesmas tendências. Então, para essas geometrias a concentração de carga esteve
continuamente nos locais em que há a formação de ângulos de 90º (Fig.8).

Figura 8 – Distribuições de carga nas geometrias em T com a reta horizontal deslo-
cada.
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As energias nos sistemas TS e THF variaram em torno de 0,90 e 0,97eV (Fig.
9) e mostraram praticamente o mesmo comportamento gráfico. É possível notar ainda
que a partir de 40Å as energias se mantiveram por volta de 0,90eV em ambas geome-
trias. Para os sistemas TVF os espectros variaram entre 0,96 e 0,90eV, e aproximada-
mente a partir de 35Å os espectros divergiram em escalas de meV (Fig. 9).

(a) Energias computacionais em sistemas line-
ares com 2 retas conectadas no confina-
mento de 1 elétron.

(b) Energias teórica intrínseca em sistemas li-
neares com 2 retas conectadas no confina-
mento de 1 elétron.

Figura 9 – Gráficos comparativos entre as energias computacional e teórica intrínseca
em sistemas lineares com retas conectadas.

5.1.2 Circulares

Para os sistemas circulares as estruturas foram previamente otimizadas (Fig.
10) e então calculadas como as demais curvas.

(a) Círculo com 10 centros. (b) Círculo com 60 centros.

Figura 10 – Regiões do confinamento eletrônico em sistemas circulares.
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Nos sistemas circulares as distribuições de carga foram uniformes ao longo de
toda região do confinamento (Fig. 11), esse comportamento pode ter sido devido a alta
simetria encontrada nessa geometria. Nesses modelos o comportamento eletrônico
observado concordou com as abordagens de confinamento intrínseco e extrínseco

Figura 11 – Distribuições de carga nos sistemas circulares.

As energias calculadas variaram em escalas de milieV embora os valores te-
nham sido próximos de 1,00eV (Fig. 12a). Enquanto que as energias intrínsecas dimi-
nuíram de 1eV para a ordem de milieV e se comparadas com os espectros intrínsecos
dos sistemas lineares os valores chegam a ser 4 vezes menores (Fig. 12b).

Por essa razão, o modelo intrínseco de confinamento parece descrever melhor
os espectros nos modelos circulares, visto que nesses sistemas as energias precisa-
riam diminuir com o aumento dos comprimentos das curvas.

(a) Energias computacionais em sistemas cir-
culares no confinamento de 1 elétron.

(b) Energias teórica intrínseca em sistemas cir-
culares no confinamento de 1 elétron.

Figura 12 – Gráficos comparativos entre as energias computacional e teórica intrín-
seca em sistemas lineares com retas conectadas.
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5.1.3 Similares a parabólas

Para a construção dos sistemas similares aos parabólicos; aqui iremos tratar
apenas como parábolas para simplificar a discussão, duas interfaces distintas foram
adotadas. A primeira apresentando uma geometria mais suave (PS) (Fig.13a), en-
quanto a segunda assemelha-se a um imã (PR) (Fig.13b).

(a) Parabólas suave com 34 centros. (b) Parabólas reta com 55 centros.

Figura 13 – Regiões do confinamento eletrônico em sistemas parabólicos.

Nos modelos de PS o elétron foi detectado na região de maior curvatura nas
curvas (área de maior intensidade em vermelho) (Fig.14). A partir de 20 centros a
variação das distribuições de carga se mantiveram no que correspondeu a região em
torno do comprimento de 13,86Å à 16,94Å.

(a) Região parabólica suave com 16 centros. (b) Região parabólica suave com 34 centros.

Figura 14 – Distribuição de carga para os sistemas parabólicos suaves.

As distribuições de carga nas séries parabólicas suaves se mostraram análo-
gas aos sistemas lineares. Foi visto que independente do aumento dos comprimentos
das estruturas a concentração das cargas permaneceram na região central, que tam-
bém é a de maior curvatura dos modelos. Dessa forma, o comportamento eletrônico



Capítulo 5. Resultados e Discussão 28

concordou tanto com a abordagem intrínseca quanto com a relatada por (DA COSTA,
1981).

(a) Gráfico das energias computacionais no
confinamento de 1 elétron em parábolas su-
aves.

(b) Gráfico das energias teórica intrínseca no
confinamento de 1 elétron em parábolas su-
aves.

Figura 15 – Gráficos comparativos entre as energias computacional e teórica intrín-
seca.

As energias computacionais se mantiveram próximas de 1,0235eV a partir
de 20 centros correpondendo ao comprimento de 29,26Å (Fig.15a). Considerando a
curva com 20 centros, apenas 7 deles conseguiram localizar a carga do elétron, nesse
caso as energias no modelo intrínseco teórico seriam 0,4396eV (Fig. 15b).

Embora este valor tenha sido menor que o obtido computacionalmente é maior
que o previsto por (DA COSTA, 1981). Além disso, os espectros computacional e in-
trínseco teórico nestes modelos foram análogos aos sistemas lineares em ambas as
abordagens (Fig. 16).

Nas parábolas retas, o elétron foi localizado nas regiões lineares das estruturas
onde a curvatura é igual a 0. Neste caso, as distribuições de carga se intensificaram
nas regiões flat correspondendo as regiões entre 7,7Å e 29,26Å de acordo com o
aumento dos centros nas curvas (Fig. 17). O comportamento eletrônico observado se
aproximou da modelagem intrínseca, uma vez que o elétron se posicionou na região
central das retas. Assim, nestes sistemas a abordagem descrita por Da Costa não se
aplicou.

Os espectros computacionais oscilaram entre 1,25eV e 0,84eV até as estrutu-
ras de comprimento de 36,96Å e a partir de 45Å (correspondente a 30 centros) as
energias variaram em escala de meV e apresentaram uma média em torno de 0,8187
eV (Fig. 18a). Enquanto as energias intrínseca diminuíram de 4eV para a grandeza
de meV por volta de 20Å em diante, ao passo que os comprimentos dos modelos
aumentavam (Fig. 18b).
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(a) Espectros computacionais dos sistemas li-
neares e das PS.

(b) Espectros teórico intrínseco dos sistemas li-
neares e das PS.

Figura 16 – Gráficos comparativo entre as energias computacional e intrínseca teórica
entre os sistemas lineares e parabólicos suave.

(a) Região parabólica reta com 25 centros. (b) Região parabólica reta com 55 centros.

Figura 17 – Distribuição de carga em sistemas parabólicos retos no confinamento de
1 elétron.

5.1.4 Lineares com curvas

Finalmente, nos sistemas lineares com curvas assim como nos parabólicos
foram escolhidas duas formas de montagem das estruturas: 1. fixando as pontas
e variando os átomos no meio (LCM) (Fig.19a) e 2. fixando os átomos centrais e
adicionando-os as pontas (LCP) (Fig. 19b).

Assim, para as estruturas lineares com curvas em que os centros foram adicio-
nados ao meio a densidade eletrônica se localizou nas regiões curvas independente
do comprimento (Fig. 20a). Para os modelos até 20 centros as distribuições de carga
se espalharam ao redor da curva 1 (à esquerda), esse comportamento é ainda mais
evidenciado para as estruturas de maior extensão (Fig. 20b).
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(a) Energias computacionais no confi-
namento de 1 elétron em sistemas
parabólicos retos.

(b) Energias teórica intrínseca no confi-
namento de 1 elétron em sistemas
parabólicos retos.

Figura 18 – Gráficos comparativos entre as energias computacional e teórica intrín-
seca em parábolas retas.

(a) LCM com 30 centros. (b) LCP com 30 centros.

Figura 19 – Regiões do confinamento eletrônico em sistemas lineares com curvas.

De acordo com as abordagens que desejamos comparar, esse modelo não
enquadrou-se em nenhuma, uma vez que através da perspectiva extrínseca apresen-
tada por (DA COSTA, 1981) as cargas deveriam estar distribuídas igualmente entre
as regiões de maior curvatura. Enquanto que no tratamento intrínseco o elétron se
localizaria na metade das curvas independente da geometria adotada.

A partir de 21 centros (correspondente a um comprimento de 30,8Å) as ener-
gias computacionais se mantiveram próximas de 0,98eV, embora tenham oscilado em
escalas de meV (Fig. 21a). Os espectros intrínseco teórico decresceram de 0,101eV
nos modelos de menor proporção à faixas de meV nas estruturas acima de 30Å (Fig.
21b). Então, com o aumento dos comprimentos das nanoestruturas o comportamento
energético observado seria ainda mais destacado.

Nos modelos lineares com curvas em que os centros foram adicionados nas
pontas, o elétron se comportou similarmente aos modelos com geometria em T. No
qual as pontas atuaram como indutoras de um poço de potencial na região central
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(a) Região LCM com 20 centros. (b) Região LCM com 30 centros.

Figura 20 – Distribuições de cargas em sistemas lineares com curvas no meio no con-
finamento de 1 elétron.

(a) Energias computacionais em sistemas line-
ares com curvas meio no confinamento de
1 elétron.

(b) Energias teórica intrtínseca em sistemas li-
neares com curvas meio no confinamento
de 1 elétron.

Figura 21 – Gráficos comparativos entre as energias computacional e teórica intrín-
seca em sistemas lineares com curvas meio.

dessas estruturas (Fig. 22). As distribuições de carga permaneceram na mesma re-
gião (considerando os 5 átomos centrais que se referem ao tamanho de 6,16Å) inde-
pendentemente dos comprimentos das nanoestruturas. Portanto, nesses sistemas o
tamanho das estruturas não foi fator determinante da concentração eletrônica.

Os sistemas estudados acima adequaram-se aos tratamentos intrínseco e ex-
trínseco, visto que o elétron se encontrou na região central das geometrias como indica
o primeiro modelo de confinamento e também na localidade de maior curvatura devido
ao potencial gerado pelas pontas das estruturas, concordando com a modelagem ex-
trínseca.

Os espectros computacionais nestes sistemas assim como nos anteriores se
encontraram em torno de 0,940eV variando em escalas de meV (Fig. 23a) conforme
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(a) LCP com 20 centros. (b) LCP com 30 centros.

Figura 22 – Distribuições de carga em sistemas lineares com curvas ponta.

os centros das moléculas aumentava mas permancendo em toda a série calculada na
faixa de 0,9eV. Por outro lado, as energias intrínsecas teórica caíram ligeiramente de
0,101eV à região de 0,019eV com o aumento dos comprimentos das estruturas (Fig.
23b).

Considerando apenas a região de maior intensidade (equivalente a 6,16Å), as
energias computacional e intrínseca teórica corresponderiam a 0,94eV e aproximada-
mente 0,98eV, respectivamente.

(a) Energias computacionais nos sistemas line-
ares com curvas ponta.

(b) Energias intrínsecas teórica nos sistemas li-
neare com curvas ponta.

Figura 23 – Gráficos comparativos entre as energias computacional e teórica intrín-
seca em sistemas lineares com curvas ponta.
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5.2 Confinamento de 2 elétrons
Nesta seção foi abordado o confinamento eletrônico para 2 elétrons não intera-

gentes, com a finalidade de estudar o comportamento eletrônico e as energias compu-
tacionais nos mesmos sistemas vistos na seção 5.1. Neste modelo de confinamento
os resultados se mostraram análogos em todas as estruturas estudadas.

5.2.1 Lineares

Analisamos o confinamento eletrônico de 2 elétrons para os mesmos sistemas
utilizados na seção 5.1.

Nos modelos lineares as distribuições de carga dos elétrons se localizaram nos
centros em cada extremidade da geometria, desde as estruturas de menor compri-
mento até as maiores. O comportamento eletrônico observado foi identico para todas
as moléculas (Fig. 24 ).

Figura 24 – Distribuições de carga no confinamento de 2 elétrons em sistemas linea-
res.

As energias computacionais variaram de 6,88eV a 3,10eV a medida que os
tamanhos das moléculas aumentavam, de forma que as estruturas menores foram
mais energéticas do que as maiores. Embora a queda energética tenha ocorrido rapi-
damente, a partir de 60Å as energias variaram na faixa em torno de 0,1ev, e nessa
escala é possível encontrar a formação de ligações químicas (Fig 25).
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Figura 25 – Gráfico das energias computacionais nos sistemas lineares para o confi-
namento de 2 elétrons.

Para os sistemas lineares com retas conectadas as distribuições de carga fo-
ram similares em todos os modelos (assim como no confinamento para 1 elétron), mas
neste modelo de confinamento os elétrons foram localizados nos átomos das extremi-
dades de cada reta (Fig. 26). Portanto, estes modelos se comportaram analogamente
a geometria anterior, visto que os elétrons se localizaram na região de maior distância
possível entre eles.

(a) THF com 16 centros . (b) TVF com 28 centros. (c) TS com 34 centros.

Figura 26 – Distribuições de carga em sistemas lineares com retas conectadas para o
confinamento de 2 elétrons.

As energias computacionais nos sistemas TS e nos TVF assim como nas geo-
metrias anteriores apresentaram variações gradativas em escalas de 1eV nas estrutu-
ras menores, no entanto a partir de 40Å as energias oscilaram na faixa de 0,1eV nas
quais mantiveram-se próximas de 3,75eV. Nos modelos THF os espectros exibiram
o mesmo comportamento gŕafico das geometrias em TS e TVF, porém mantendo as
energias na região de 4eV a partir dos comprimentos entre 20Å à 35Å (Fig. 27).
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Figura 27 – Gráfico das energias computacionais nos sistemas lineares com geome-
tria T para o confinamento de 2 elétrons.

5.2.2 Circulares

Nos modelos circulares as densidades eletrônicas foram uniformes em todos
os centros das curvas, assim como no confinamento de 1 elétron. Podemos afirmar
que os elétrons poderiam estar dispostos igualmente por toda a região confinante
independente dos comprimentos empregados as circunferências (Fig. 29).

Figura 28 – Distribuição de carga em sistemas circulares no confinamento de 2 elé-
trons.

Assim como nos modelos anteriores os espectros computacionais nesta geo-
metria variaram ligeiramente na região entre 6,0eV à 3,4eV descrevendo o gráfico de
uma função do primeiro grau.

5.2.3 Similares aos Parabólicos

Nos sistemas parabólicos suaves os elétrons se localizaram na região de maior
distância possível entre eles (Fig. 30a). Por outro lado, nas parábolas retas as cargas
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Figura 29 – Gráfico das energias computacionais nos sistemas circulares para o con-
finamento de 2 elétrons.

dos elétrons se concentraram à 6,74Å uma da outra (Fig. 30b), mesmo com o aumento
nos comprimentos da geometria.

(a) Parábola suave com 16 centros. (b) Parábola reta com 15 centros.

Figura 30 – Distribuições de carga em sistemas similares aos parábolicos no confina-
mento de 2 elétrons.

As energias computacionais em ambas as geometrias apresentaram queda
conforme os centros foram sendo adicionados aos modelos. Nas parábolas suaves a
diminuição nos espectros esteve entre 6,43eV à 3,66eV, e a partir de 40Å as energias
situaram-se no entorno de 3,5eV. No caso das parábolas retas foi visto que os es-
pectros localizaram-se próximos de 6,89eV à 3,18eV de forma análoga as parábolas
suaves, o comportamento gráfico exibido em ambos os modelos foram correlatos e
equivalentes à função exponencial (Fig.31).
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Figura 31 – Gráfico das energias computacionais nos sistemas similares aos parabó-
licos no confinamento de 2 elétrons.

5.2.4 Lineares com curvas

Análogas aos sistemas já descritos anteriormente, as distribuições de carga
das linhas com curvas, os elétrons se encontraram nas regiões extremas das estrutu-
ras desses modelos. Nas LCM as densidades eletrônicas variaram moderadamente,
de modo que parte delas foram conduzidas para a região de maior curvatura. E ape-
sar disso, os centros das extremidades ainda apresentaram a maior concentração de
carga (Fig. 32a).

(a) LCM com 30 centros. (b) LCP com 30 centros.

Figura 32 – Distribuições de carga em sistemas lineares com curvas no confinamento
de 2 elétrons.

Os sistemas de LCP também exibiram densidades eletrônicas na região de
maior distância entre os elétrons, semelhante ao comportamento descrito pelos siste-
mas anteriores. As distribuições de carga se concentraram nos centros situados nas
extremidades dos sistemas (Fig. 32b).

Os espectros computacionais nos dois sistemas lineares com curvas apresen-
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taram comportamentos gráficos praticamente equivalentes, descrevendo uma função
linear. As energias variaram nos modelos LCM em torno de 4,73Å à 3,69Å a medida
que as curvas ampliavam, enquanto que para os sistemas LCP os espectros oscilaram
entre 4,69Å à 3,72Å. Então, as variações energéticas apresentadas nestes sistemas
foram entre escalas de 0,1eV e 0,01eV sendo uma das exceções se comparadas com
as faixas espectrais das geometrias anteriores para o confinamento de 2 elétrons (Fig.
33).

Figura 33 – Gráfico das energias computacionais em sistemas lineares com curvas no
confinamento de 2 elétrons.

As distribuições de cargas previstas pelas modelagens de Da Costa e pela
intrínseca não puderam ser confirmadas através no confinamento de 2 elétrons em
átomos fantasmas, uma vez que em todas as geometrias os elétrons buscaram per-
manecer o mais distante possível uns dos outros, com exceção apenas dos sistemas
circulares e dos parabólicos retos.

Portanto, o confinamento eletrônico de 2 partículas demonstraram que o com-
portamento gráfico para todos os sistemas foi análogo, com ressalvas apenas para os
sistemas circulares que apresentaram linearidade tanto no confinamento de 1 elétron
quanto no de 2 elétrons. Novak (NOVAK, 2001) demonstrou que os fermions (neste tra-
balho em particular usamos os elétrons) se afastam uns dos outros em consequência
de limitações impostas nas funções de onda das partículas, além da repulsão Coulom-
bica também ter contribuído com a repulsão eletrônica nestes sistemas.
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6 Considerações Finais

Analisamos uma série de curvas correspondentes a nanoestruturas no confina-
mento eletrônico. Estudamos o comportamento eletrônico através das distribuições de
cargas e suas energias relacionadas. Foram verificados padrões em alguns dos siste-
mas simulados computacionalmente em acordo com o modelo intrínseco analítico e
também com o previsto por Da Costa, especialmente nas distribuições de carga dos
elétrons nas nanoestruturas.

As distribuições de carga no confinamento de 1 elétron se localizaram na re-
gião central das estruturas lineares, parabólicas suaves e lineares com curvas na
ponta. Em todos esses sistemas o comportamento previsto pelo modelo analítico in-
trínseco foi confirmado. Nos sistemas parabólicos suaves e lineares com curvas na
ponta também foi verificado o comportamento descrito pela modelagem extrínseca.
Nos modelos lineares com curvas no meio as distribuições de carga divergiram em
ambas abordagens, neste caso o elétron se concentrou somente em uma das curvas.

No caso do confinamento de 2 elétrons, as distribuições de carga em todos
os sistemas foram análogas: concentraram-se nas regiões de maior distância entre
as partículas. Seria possível afirmar então que esse efeito foi resultante da repulsão
eletrônica existente em sistemas multieletrônicos, além de estar atrelado à limites exi-
gidos através das funções de onda na equação de Schrödinger. Os modelos circulares
e parabólicos retos foram as exceções desse padrão comportamental, indicaram que
as cargas poderiam se concentrar em todos os centros nas curvas dos modelos cir-
culares e numa distância de 6,74Å entre os elétrons nos sistemas parabólicos retos.
Nesses casos a abordagem prevista por Da Costa não se aplicou a nenhum desses
sistemas e a modelagem intrínseca descreve apenas os sistemas circulares.

As energias computacionais no confinamento de 1 elétron foram próximas de
1 eV com oscilações em escalas de 0,1eV para os sistemas lineares e parabólicos,
enquanto que para os demais modelos a variação esteve na proporção de 0,01 eV. E
embora aparente ser uma pequena variação, a escala de 0,1 eV pode indicar fenôme-
nos típicos de ligações químicas. Por outro lado, no caso do confinamento de 2 elé-
trons, as energias calculadas em todos os sistemas foram reduzindo gradativamente
conforme o comprimento das estruturas aumentava. Os valores foram entre 6,0eV a
3,5eV. Apesar dos modelos estudados serem simples é possível encontrar potenciais
aplicações práticas: o uso de nanoestruturas 1D como meio de otimização do trans-
porte eletrônico além do envelopamento de fotocatalizadores.
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