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“There’s a natural mystic blowing through the air” 

(Bob Marley) 



 

 

RESUMO 

 

A equação de Schrödinger vem sendo resolvida numericamente por diversos métodos de 

Runge-Kutta. O estudo desta equação considerando a energia do sistema sendo nula, entre 

diversas outras aplicações, permite a análise do estado limite de ligação de uma partícula em 

um dado sistema quântico. Assim, no presente trabalho resolvemos a equação em seu modo 

zero, considerando uma abordagem extrínseca do confinamento em uma região 

unidimensional, utilizando o método de Runge-Kutta de 4ª ordem mais utilizado para 

resoluções de EDOs.  Inicialmente, obtivemos numericamente as funções de onda para uma 

partícula confinada em uma reta e em circunferências de diferentes raios, por serem curvas 

com parametrizações por comprimento de arco conhecidas. Em seguida estudamos curvas a 

partir de suas curvaturas, o que permitiu o estudo do confinamento em espirais de Arquimedes 

e em espirais logarítmicas. Por fim, estudamos o confinamento em curvas hipotéticas que 

ainda não possuem parametrizações definidas. Os resultados obtidos possibilitaram a análise 

das regiões nas curvas com maiores tendências de sofrerem ionização, podendo ser 

possivelmente utilizados como modelos para a ionização de moléculas e nanoestruturas com 

geometrias semelhantes às estudadas.  

 

Palavras-chave: Runge-Kutta. Confinamento quântico. Curvas planas. Modo Zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 

 

The Schrödinger equation has been solved numerically by several Runge-Kutta methods. The 

study of this equation considering the system energy being zero, among several other 

applications, allows an analysis of the binding limit state of a particle in a given quantum 

system. Thus, in the present work we solve the equation in its zero mode, considering an 

extrinsic approach to confinement in a one-dimensional region, using the 4th order Runge-

Kutta method most used for ODE solutions. Initially, we obtained numerically the 

wavefunctions for a particle confined in a straight line and in circles of different radius, as 

they are curved with parameterizations by arc length file. Then we study curves from their 

curvatures, which advises the study of confinement in Archimedean spirals and in logarithmic 

spirals. Finally, we study confinement in hypothetical curves that do not yet have defined 

parameterizations. The results obtained made it possible to analyze the regions in the curves 

with greater tendencies to occur ionization, which could be used as model for the ionization of 

molecules and nanostructures with geometries similar to those studied.  

 

Keywords: Runge-Kutta. Quantic Constrain. Plane Curves. Zero Energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

SUMÁRIO 

 
1 INTRODUÇÃO..................................................................................................................10 

2 FUNDAMENTAÇÃO TEÓRICA....................................................................................11 

2.1 GEOMETRIA DIFERENCIAL DE CURVAS................................................................11 

2.1.1 Parametrização de curvas...........................................................................................11 

2.1.2 Parametrização por comprimento de arco................................................................13 

2.1.3 Curvatura.....................................................................................................................13 

2.2 EQUAÇÃO ESTACIONÁRIA DE SCHRÖDINGER.....................................................14 

2.2.1 Modo zero.....................................................................................................................16 

2.2.2 Interpretação probabilística da função de onda.......................................................16 

2.3 MÉTODO DE RUNGE-KUTTA DE 4ª ORDEM (RK4)................................................17 

2.3.1 Método  RK4 para EDOs de 2ª Ordem......................................................................18 

3 OBJETIVOS.......................................................................................................................20 

3.1 GERAL.............................................................................................................................20 

3.2 ESPECÍFICOS..................................................................................................................20 

4 METODOLOGIA..............................................................................................................21 

5 RESULTADOS E DISCUSSÃO.......................................................................................23 

5.1 VALIDAÇÃO DO RK4....................................................................................................23 

5.2 CURVAS DESCRITAS NA LITERATURA...................................................................24 

5.2.1 Partícula com energia zero confinada em uma reta.................................................24 

5.2.2 Partícula com energia zero confinada em uma circunferência................................26 

5.3 CURVAS A PARTIR DA CURVATURA.......................................................................28 

5.3.1 Partícula com energia zero confinada em uma curva com ∫  ( )   
 

  
      ...28 

5.3.2 Partícula com energia zero confinada em uma curva com ∫  ( )   
 

  
   √ ......32 

5.4 CURVATURA DE CURVAS DESCONHECIDAS........................................................37 



 

 

5.4.1 Partícula com energia zero confinada em uma curva com   ( )      ( )..........38 

5.4.2 Partícula com energia zero confinada em uma curva com  ( )      ( )..........39 

5.4.3 Partícula com energia zero confinada em uma curva com        ......................40 

5.4.4 Partícula com energia zero confinada em uma curva com   ( )      ( )...........41  

6 CONCLUSÃO....................................................................................................................44 

REFERÊNCIAS....................................................................................................................45 

APÊNDICE A – ALGORITMO UTILIZADO PARA A COMPARAÇÃO DO RK4 

COM UMA EDO DE PRIMEIRA ORDEM E OUTROS MÉTODOS 

NUMÉRICOS........................................................................................................................47 

APÊNDICE B – ALGORITMO UTILIZADO PARA A COMPARAÇÃO DO RK4 

COM UMA EDO DE SEGUNDA ORDEM E OUTROS MÉTODOS 

NUMÉRICOS........................................................................................................................50 

APÊNDICE C – ALGORITMO UTILIZADO PARA A RESOLUÇÃO DA EQUAÇÃO 

DE SCHRÖDINGER NO MODO ZERO UTILIZANDO O RK4...................................53 

 



10 

 

1 INTRODUÇÃO 

 

Sistemas quânticos podem ser estudados utilizando a Equação Diferencial Ordinária 

(EDO) de segunda ordem nomeada como equação de Schrödinger estacionária, onde 

admitisse que o sistema não evolui com o tempo (SCHRÖDINGER, 1926 apud 

NUSSENZVEIG, 2014).  

O operador Hamiltoniano da equação de Schrödinger deve ser modelado de acordo 

com o sistema em estudo. Uma possível abordagem é a modelagem intrínseca do operador, 

onde apenas a região que contém a partícula é considerada existente, já a abordagem 

extrínseca leva em consideração não apenas a região onde a partícula está confinada, mas 

também o ambiente no qual este sistema quântico está contido (SILVA, BASTOS e 

RIBEIRO, 2017).  

Da Costa (1981) propõe um Hamiltoniano, extrinsecamente modelado, para o 

confinamento quântico unidimensional, onde o operador possui um termo potencial 

geométrico, dependente da curvatura da região, sendo este responsável pelo confinamento da 

partícula.  

O modo zero da Equação de Schrödinger é dado quando a energia do sistema quântico 

em estudo é igual a zero. Este caso particular da equação tem sido estudado por apresentar 

aplicações físicas, como a descrição de sistemas com partículas ultrafrias (PADE, 2009), além 

de possibilitar a descoberta de termos potenciais que permitem estados com energia zero 

(KOBAYASHI E SHIMBORI, 2002), ou ainda, permitir o estudo do estado limite de ligação 

de uma partícula quântica confinada em uma certa região (DABOUL e NIETO, 1994).  

Em muitos casos, Equações Diferenciais Ordinárias (EDOs) ainda não possuem 

soluções analíticas obtidas ou apresentam soluções não triviais. Assim, métodos numéricos 

têm sido utilizados para solucionar EDOs nas mais diversas áreas do conhecimento. Dentre 

esses, destaca-se o método de Runge-Kutta de 4ª ordem (RK4) clássico, um método numérico 

de passo único comumente utilizado por possuir simples implementação e fornecer resultados 

efetivos (CHAPRAS e CANALE, 2016). 

Diferentes métodos de Runge-Kutta têm sido desenvolvidos e implementados para a 

resolução de diversos casos particulares da equação de Schrödinger (ANASTASSI e SIMOS, 

2007), porém não encontramos na literatura soluções para o modo zero da equação de 

Schrödinger, considerando a abordagem extrínseca dada por Da costa (1981) para o 

confinamento quântico unidimensional. Portanto, o presente trabalho pretende resolver 

numericamente a EDO que modela este problema, utilizando o RK4.  
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2 FUNDAMENTAÇÃO TEÓRICA  

 

2.1 GEOMETRIA DIFERENCIAL DE CURVAS 

 

Nesta seção, abordaremos noções de geometria diferencial de curvas (DO CARMO, 

2016), importantes para a compreensão do presente trabalho. Durante a discussão, as curvas 

contidas no    (PICADO, 2006) serão mais constantemente comentadas por integrarem os 

objetivos do trabalho.  

Primeiramente, discorremos acerca da parametrização de curvas, em seguida será 

discutida a parametrização por comprimento de arco e por fim será abordada a noção de 

curvatura.  

 

2.1.1 Parametrização de curvas  

 

No estudo da geometria analítica, uma curva é considerada como um subconjunto de 

pontos pertencentes ao   , porém na geometria diferencial surge o conceito da 

parametrização de curvas contidas no   , que consiste em abordar uma curva como a imagem 

de uma função   que leva os pontos de um intervalo ,   - para o   ,  como ilustra a Figura 

1. 

 

Figura 1– Parametrização de uma curva pela função σ. 

 

 

Fonte: Autoria própria.  

 

A função   é contínua e diferenciável e pode ser definida formalmente como:  

   ,   -     (1) 

Com a parametrização, os pontos da curva são dados por  ( ), sendo     ,   -   

Como a curva está inserida no   , temos que:  
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  ( )  (  ( )   ( )     ( ))   (2) 

As chamadas funções coordenadas,   ( )   ( )     ( ), são as coordenadas do 

ponto  ( ) pertencente à curva e agem como funções de t, pois levam um ponto no intervalo 

,   -  a um número real.   

Como a função   é diferenciável, é possível encontrar o vetor tangente em  ( )  dado 

na equação 3 e representado na Figura 2. 

   ( )  (   ( )    ( )      ( ))   (3) 

 

Figura 2– Curva parametrizada pela função σ com vetor tangente a curva, σ'(t), no ponto σ(t). 

 

 

Fonte: Autoria própria. 

  

Para exemplificar a parametrização de uma curva, podemos considerar uma 

circunferência contida no plano, com raio   e centro na origem do plano cartesiano, Figura 3.  

Se abordarmos a curva como subconjunto do plano, temos sua definição como:  

  * (   )               + (4) 

 

Figura 3– Circunferência contida no   , com raio   e centro na origem do plano cartesiano. 

 

 

Fonte: Autoria própria 

 

Contudo, podemos considerar a curva como resultado da parametrização pelo ângulo 

θ, formado entre   e o eixo   do plano cartesiano, assim: 
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  ( )  (           ) (5) 

Com isso parametrizamos a circunferência, utilizando a função  , que leva pontos do 

intervalo que contém   para o   . 

   ,    -     (6) 

É também possível obter o vetor tangente ao ponto  ( ), dado por:  

   ( )  (            ) (7) 

 

2.1.2 Parametrização por comprimento de arco 

 

Para uma dada curva parametrizada,   ,   -    , com     ,   -,  podemos definir 

seu comprimento como:  

 
 ( )  ∫ ‖  ( )‖  

 

 

 (8) 

Dizemos que   ,   -     é uma curva parametrizada pelo comprimento de arco 

se: 

  (  ,   -)             ,   - (9) 

Ou seja, a distância de   até  , no intervalo, é exatamente o comprimento de  ( ) até 

 ( ), na curva. Portanto, a partir das equações 8 e 9, temos que   é curva parametrizada pelo 

comprimento de arco se, e somente se, o vetor tangente à curva tem comprimento constante 

igual a 1. 

 ‖  ( )‖           ,   -  (10) 

Note que apenas curvas regulares, isto é   ( )     para todo     ,   -,  podem ser 

parametrizadas por comprimento de arco. 

É comumente adotada a variável s para curvas parametrizadas por comprimento de 

arco. Neste texto adotaremos esta convenção.  

 

2.1.3 Curvatura 

 

A curvatura,  ( ), de uma curva plana  ( ), pode ser entendida como uma medida do 

quanto a curva se afasta de estar contida em uma reta.  

Para uma curva parametrizada por comprimento de arco, sua curvatura em um dado 

ponto  ( ) equivale a taxa de variação do vetor tangente à curva, ou seja, o módulo da 

segunda derivada da curva neste ponto  
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  ( )  ‖   ( )‖    (11) 

 O teorema fundamental das curvas planas garante que dada uma curvatura existe uma 

única curva plana associada e vice-versa, a menos de sua rotação. Como consequência, 

podemos encontrar a parametrização de uma curva plana a partir de sua curvatura da seguinte 

forma (PICADO, 2006):  

 
 ( )  (∫    (∫  ( )   

 

  

)   
 

  

 ∫    (∫  ( )   
 

  

)  
 

  

) (12) 

 

2.2 EQUAÇÃO ESTACIONÁRIA DE SCHRÖDINGER  

 

A equação estacionária de Schrödinger (1926, apud NUSSENZVEIG, 2014) é uma 

equação de autovalor comumente utilizada nos estudos de sistemas quânticos que não 

evoluem com o tempo. Nesta equação o operador Hamiltoniana o ( ̂) é aplicado sobre uma 

função de onda ( ), resultando na energia associada ao sistema,  , e na própria  , o que faz 

com que esta seja uma autofunção na equação (LIMA, 2014).   

  ̂     (13) 

A equação 13 é o equivalente quântico da equação clássica de energia total de um 

sistema, assim o Hamiltoniano é o resultado da soma de outros dois operadores representantes 

da energia cinética ( ̂) e da energia potencial ( ̂) do sistema em estudo (NUSSENZVEIG, 

2014).  

  ̂    ̂   ̂ (14) 

Com isso, o operador  ̂ deve ser modelado de acordo com o sistema quântico a ser 

estudado, uma vez que cada Hamiltoniano fornece um espectro de energia dado por  .  

Como exemplo, temos o problema da partícula confinada em uma curva   contida no 

espaço Euclidiano. Neste sistema o Hamiltoniano pode ser modelado considerando a 

abordagem intrínseca, onde se considera que existe apenas o sistema da região do 

confinamento e a região que o contém não é abordada (BASTOS et al, 2012), como 

representado na figura 4. Nesta abordagem o operador  ̂ é composto apenas pelo termo 

cinético: 

 
 ̂    ̂   

  

  
 
  

   
 (15) 

Onde   é a constante reduzida de Planck (      ), m é a massa efetiva dessa partícula 

e   é a variável comprimento de arco. 
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Figura 4 – Representação da abordagem intrínseca para o confinamento unidimensional de 

uma partícula com massa especifica   na região  . 

 

 

Fonte: Autoria própria 

 

Contudo, ainda considerando o mesmo sistema, podemos utilizar a abordagem 

extrínseca para a modelagem do Hamiltoniano, onde a existência do ambiente no qual está 

inserido o sistema em questão é levada em consideração. Como na figura 5, onde tanto o 

espaço euclidiano tridimensional, ao qual σ pertence, quanto a própria curva σ, que contém a 

partícula, são abordados. 

 

Figura 5 – Representação da abordagem extrínseca para o confinamento unidimensional de 

uma partícula com massa especifica   na região σ contida no espaço euclidiano 

tridimensional. 

 

 
 

Fonte: Autoria própria 

 

Uma modelagem extrínseca deste problema foi desenvolvida por Da Costa (1981). 

Nesta, a partícula está confinada em uma curva ou superfície imersa no espaço Euclidiano, e o 

confinamento é mantido por um potencial atrativo presente sobre toda a região. Este potencial 

é sensível à variação da curvatura da curva,  ( )   

Assim, o Hamiltoniano proposto por Da Costa para uma partícula confinada em uma 

curva tem seu termo cinético sendo o mesmo da abordagem intrínseca, porém possui ainda 

um termo de potencial geométrico dependente de  ( ). 

 

 
 ̂   

  

  
 
  

   
 
  

  
 ( )   (16) 
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2.2.1 Modo zero  

 

O modo zero da equação Schrödinger é dado quando a energia do sistema quântico é 

zero,    .  

O estudo da equação neste modo, além de tornar mais simples a sua resolução, modela 

sistemas físicos existentes (MAKOWSKI e GÓRSKA, 2006).  

Uma importante consequência em abordar o modo zero da equação Schrödinger no 

contexto do presente trabalho é a possibilidade do estudo do estado limite de ligação de uma 

partícula (DABOUL e NIETO, 1994). 

Geralmente sistemas com     são tidos como estados ligados, já sistemas com 

    são tratados como estados não ligados. Assim, uma possível interpretação para 

sistemas com      é a de se tratar da transição do estado ligado para o estado não ligado. 

Entretanto, neste estado transitório já é possível definir qual o estado de ligação existente.  

A função de onda que rege o sistema quântico com     determinará o estado de 

ligação do sistema (DABOUL e NIETO, 1994). Se  ( )    com     , ou com     e 

    , para um sistema confinado em uma região com tamanho   e ínicio em    ,   temos  

o estado ligado. Caso contrário, trata-se de um sistema com estado não ligado. 

 

2.2.2 Interpretação probabilística da função de onda 

 

 Em 1928, Max Born propôs uma interpretação física para a função de onda de uma 

certa partícula,  ( ) no caso unidimensional estacionário. Nesta intepretação 

(NUSSENZVEIG, 2014), a probabilidade de encontrar uma partícula quântica numa região 

entre   e      é dado pelo produto entre o quadrado do módulo da função de onda com  

    

  ( )     | ( )|       (17) 

onde  ( ) é a densidade de probalilidade em  . 

  Assim, a área sob  | ( )|  em uma região de    a   determina a probabilidade de se 

encontrar a partícula quântica, regida por  ( ), nesta região: 

 
∫  ( )   
 

  

 ∫ | ( )|    
 

  

     (18) 
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2.3 MÉTODO DE RUNGE-KUTTA DE 4ª ORDEM (RK4) 

 

O método Runge-Kutta de ordem 4 é um dos métodos numéricos de passo único 

(CHAPRAS e CANALE, 2016). Esses métodos se caracterizam por partirem de um ponto 

inicial conhecido (     ) para, através do cálculo da inclinação  , calcular-se os pontos 

seguintes pertencente à curva que resolve a equação diferencial ordenada (EDO) em estudo, 

da seguinte maneira:  

               (19) 

Onde    é um número pertencente ao conjunto dos números naturais de 1 a   que 

indica o atual par ordenado que está se está calculando, sendo   o número de pontos que se 

deseja encontrar. O passo,  , equivale a distância entre a abcissa de um ponto qualquer (    ) 

e a abcissa do ponto seguinte (  ) que se pretende calcular. Assim como o ponto inicial 

(     ), todos estes parâmetros devem ser previamente determinados para a implementação 

do método de passo único escolhido.  

             (20) 

Nos métodos de passo único, o ponto seguinte é sempre calculado a partir da 

inclinação   da reta que passa pelo ponto anteriormente calculado. Quanto melhor o método, 

maior será a aproximação entre o valor estimado e o valor exato, porém normalmente 

desconhecemos este último. A maneira como   é calculada é o que difere os métodos de 

passo único.  

No método Runge-Kutta de ordem 4, em especifico, são calculadas 4 inclinações (  , 

  ,     e    ) para então calcular-se a média ponderada destas, obtendo-se assim a inclinação 

 .  

Consideremos uma EDO de primeira ordem, dada de forma genérica na equação 21. 

   

  
  (   ) (21) 

 Existem infinitos possíveis métodos RK4 para a resolução numérica desta EDO, 

contudo no mais utilizado a inclinação    é calculada no início do intervalo atual, em seguida, 

partindo de   , calcula-se    na metade do intervalo estudado (        ). Utilizando    

encontra-se uma terceira inclinação,   , também na metade do intervalo, e finalmente, de 

posse da inclinação   , calculamos a quarta inclinação,   , no fim do intervalo atual (     

  ou   ). 

     (         ) (22) 
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    (     

 

 
         

 

 
  ) (23) 

 
    (     

 

 
         

 

 
  ) (24) 

     (                 ) (25) 

Para o cálculo da inclinação utilizada para encontrar o próximo ponto ( ), obtemos a 

média ponderada das inclinações encontradas anteriormente, considerando    e    com peso 

igual a 1 e    e    com peso igual a 2. 

 
  

              
 

 (26) 

De posse da inclinação  , a ordenada do ponto a ser calculado é encontrada utilizando 

a equação 19. Repetindo-se esta metodologia   vezes, encontram-se todos os pares ordenados 

desejados através do método RK4. 

 

2.3.1 Método RK4 para EDOs de 2ª Ordem  

 

Para resolver numericamente uma EDO de ordem superior, precisamos transformá-la 

em um sistema de EDOs de primeira ordem (FRANCO, 2006). Vejamos o caso da 

transformação de uma EDO de segunda ordem, dada de forma genérica por:  

    

   
  (    

  

  
) (27) 

Podemos definir uma variável auxiliar  , onde:  

 
  

  

  
 (28) 

   

  
 
   

   
  (29) 

Com isso, obtivemos um sistema com duas EDOs de primeira ordem: 

 

{

  

  
      (     )

  

  
  (    

  

  
)    (     )

 (30) 

De posse do sistema, determinamos um intervalo de estudo [     -, um passo   e as 

condições iniciais  (  )     e  (  )     para implementarmos o método RK4 da seguinte 

maneira:  

 
        

 

 
(                 ) (31) 
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(                 ) (32) 

Onde:  

 
      (               ) (33) 

 
      (              ) (34) 

 
      (     

 

 
          

 

 
           

 

 
  ) (35) 

 
      (     

 

 
          

 

 
           

 

 
  ) (36) 

 
      (     

 

 
          

 

 
           

 

 
  ) (37) 

 
      (     

 

 
          

 

 
           

 

 
  ) (38) 

 
      (                               ) (39) 

 
      (                               ) (40) 
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3 OBJETIVOS 

 

3.1 GERAL 

 

Resolver numericamente a equação estacionária de Schrödinger com energia zero para 

o confinamento unidimensional utilizando o método Runge-Kutta de 4ª ordem.  

 

3.2 ESPECÍFICOS 

 

 Calcular parametrizações por comprimento de arco para curvas planas a partir de suas 

curvaturas; 

 Calcular numericamente o confinamento eletrônico extrínseco em curvas planas a 

partir de suas curvaturas; 

 Analisar as regiões com maiores probabilidades de se encontrar elétrons ionizáveis nas 

curvas estudadas.    
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4 METODOLOGIA 

 

Inicialmente automatizamos o método Runge-Kutta de 4ª ordem para EDOs de 

primeira e segunda ordem, vide seção 2.3 e 2.3.1, utilizando um algoritmo desenvolvido no 

programa Scilab versão 6.1.0.  

Em seguida, adaptamos o método para a EDO que modela o confinamento extrínseco 

unidimensional, dado por Da Costa, para uma partícula no modo zero de energia. Os 

algoritmos utilizados para obtenção dos resultados são apresentados nos Apêndices.    

De posse do RK4 automatizado, resolvemos numericamente duas EDOs, de primeira e 

segunda ordem, e comparamos com suas soluções analíticas, visando a validação do método. 

Nesse estudo ainda foram utilizados outros métodos numéricos de passo único para 

comparação com o RK4. Os parâmetros numéricos utilizados para a resolução das duas EDOs 

estudadas são explicitados na tabela 1.  

 

Tabela 1 – Parâmetros numéricos utilizados para a validação do RK4 automatizado. 

Ordem da 

EDO 
                 (        ) 

  (        )

  
   

1ª -3,9 3,9 0,0004977 - 0,1 

2ª 0 4 3 2 0,2 

Fonte: Autoria própria. 

 

Encontramos curvas com parametrizações por comprimento de arco e curvaturas já 

conhecidas na literatura. Utilizamos as curvaturas encontradas para a resolução numérica da 

EDO estudada através do método de RK4. 

 Encontramos ainda, curvaturas não descritas na literatura que permitem tanto a 

resolução numérica da EDO em questão, como o cálculo da parametrização por comprimento 

de arco da curva à qual a curvatura pertence, equação 12.  

 Por fim, curvaturas que permitem a resolução numérica da EDO em estudo, mas que 

impossibilitam a solução analítica da parametrização por comprimento de arco de suas curvas, 

também foram estudadas.  

Para algumas curvaturas estudadas implementamos um parâmetro  , o que permitiu a 

análise do efeito do aumento numérico da função curvatura, de um dado tipo de curva plana, 

na função de onda que rege a partícula com energia zero confinada nesta curva.  
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A análise da densidade eletrônica a partir das resoluções numéricas foi feita de 

maneira qualitativa.   

Todos os gráficos foram gerados utilizando o programa Origin 2018. Os parâmetros 

numéricos utilizados para a implementação do método de RK4 em todos os casos estudados 

estão dados na tabela 2.   

 

Tabela 2 – Parâmetros numéricos utilizados para cada curvatura estudada. 

 ( )                  (        ) 
  (        )

  
   

0 0 100 0 1 0,1 

 

 
 0 700 0 1 1 

 

 
 0,1 10000 0 1 5 

 

 √ 
 0,1 2000 0 1 1 

      0 120 0 1 0,1 

      0 120 0 1 0,1 

   0 10 0 1 0,01 

   ( ) 0,1 50 0 1 0,1 

Fonte: Autoria própria. 
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5 RESULTADOS E DISCUSSÃO  

 

 Admitimos      na equação estacionária de Schrödinger, equação 13, e adotamos o 

Hamiltoniano proposto por da Costa para o confinamento quântico unidimensional, equação 

16. Deste modo, obtemos a equação que modela o problema da partícula no modo zero 

confinada em uma curva plana: 

    ( )

   
   

 ( )  

 
 ( ) (41) 

 Solucionamos numericamente a equação 41 para algumas funções curvaturas, 

utilizando o Rk4. 

 

5.1 VALIDAÇÃO DO RK4 

 

Visando o aprendizado e validação do RK4 escolhemos arbitrariamente duas EDOs 

com soluções analíticas conhecidas, sendo uma de primeira ordem e outra de segunda ordem, 

dadas na tabela 3, e comparamos com suas respectivas soluções numéricas calculadas por 

alguns métodos de passo único além do RK4: método de Euler, método de Heun e o método 

do ponto médio, figura 6.  

 

Tabela 3 – EDOs estudadas para validação do método e suas respectivas soluções analíticas. 

EDO Solução Analítica 

  

  
              

 

   
  

 

 

  
   

   
      

  

  
             

  
  

Fonte: Polyanin e Zaitsev (2003). 

 

A EDO de primeira ordem estudada é um exemplo de equação de Bernoulli, utilizada 

no estudo de mecânica dos fluídos (FOX et al., 2018), já a EDO de segunda ordem pode 

modelar, por exemplo, um sistema massa-mola de oscilação livre e com amortecimento 

(NUSSENZVEIG, 2014). 
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Figura 6 – Soluções analíticas e numéricas para as EDOs de primeira ordem (A) e de segunda 

ordem (B). 

 
 

            
         Fonte: Autoria própria 

 

 Analisando os resultados expostos na figura 6, nota-se que o RK4 é o método 

numérico, dentre os métodos de passo único utilizados, que fornece resultados mais próximos 

das soluções analíticas das EDOs de primeira e de segunda ordem.  

 

5.2 CURVAS DESCRITAS NA LITERATURA  

 

Nesta seção pretendemos resolver numericamente o nosso problema considerando as 

curvas com parametrizações por comprimento de arco e curvatura já descritas na literatura. As 

curvas encontradas foram a reta e a circunferência. 

 

5.2.1 Partícula com energia zero confinada em uma reta 

 

Parametrizando uma reta   contida no   ,          paralela ao vetor      

         que passa pelo ponto  (     ),  figura 7,  por comprimento de arco, tem-se: 

 
 ( )  (    

   

√       
      

   

√       
) (42) 

 

A B 
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Figura 7 –  Reta paralela ao vetor v e passando pelo ponto P. 

 

Fonte: Autoria própria. 

 

Para qualquer reta  ( )    (DO CARMO, 2016), com isso a EDO que modela uma 

partícula com energia zero confinada nesta curva se torna:   

    ( )

   
     (43) 

A equação 43 é nomeada equação de Laplace unidimensional. Tal equação também 

modela o problema da distribuição de potencial entre dois pontos e tem como solução 

analítica uma reta (FONTANA, 2010).  

Resolvemos a equação 43 utilizando o método Runge-Kutta de 4ª ordem, figura 8. 

 

Figura 8 – Resolução numérica para uma partícula com energia zero em uma reta. 

 

Fonte: Autoria própria. 
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Como o RK4 é implementado em um intervalo definido de  , a região estudada para o 

confinamento da partícula é um segmento de reta.    

A função  ( ) se comporta como uma reta, como previsto pela literatura 

(FONTANA, 2010). 

Como  ( ) não atende a condição de contorno  ( )    e  ( )   , o resultado 

indica que a partícula, quando com energia zero, não se encontra mais confinada na reta. 

Porém, o Hamiltoniano modelado por Da Costa (1981), utilizado na modelagem do problema 

estudado, pressupõe o confinamento quântico da partícula.  

Com isso, o resultado encontrado aponta que não é possível confinar uma partícula 

quântica com energia zero em uma molécula ou nanoestrutura com geometria semelhante à de 

uma reta, ou seja, a ionização nestas estruturas deve acontecer em uma energia ainda negativa 

do sistema.    

     

5.2.2 Partícula com energia zero confinada em uma circunferência 

 

Uma circunferência qualquer  ,  (    ) 
   (    ) 

    , tem centro em  (     ), 

e raio  . Parametrizando   por comprimento de arco  , tem-se: 

 
 ( )  (        

 

 
           

 

 
 ) (44) 

Para toda circunferência de raio  ,   ( )   
 

 
 (DO CARMO, 2016). Assim, a EDO 

que modela o problema do confinamento extrínseco no modo zero em uma circunferência é 

dada por:  

    ( )

   
    

 

   
 ( ) (45) 

Para a obtenção do gráfico da   ( ) que resolve a EDO numericamente, foram 

estudadas 5 circunferências com centro em  (     ) e   = 2; 10; 30; 70 e 100, o que tornou 

possível a análise do comportamento de  ( ) com a variação estudada do raio  , figura 9. 

Analisando os gráficos da figura 9, todas as funções de onda apresentaram um 

comportamento senoidal, com aumento da frequência e amplitude de onda de acordo com o 

aumento de   .   
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Figura 9 – Circunferências com   = 2; 3; 4 e 5 (A) e as respectivas  ( ) (B, C, D, E e F)  para 
uma partícula no modo zero confinada às circunferências de A. 

 

  

 

     

    

Fonte: Autoria própria. 

  

 Como consequência da interpretação da função de onda dada por Max Born 

(NUSSENZVEIG, 2014), podemos analisar qualitativamente a densidade eletrônica pelo 

 

A B 

C D 

E F 
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gráfico da função de onda. Dado que as áreas dos picos da função de onda em um dado   são 

iguais, as regiões com maiores densidades eletrônicas, nas circunferências estudadas, tendem 

a ser equidistantes.       

 Por representarem o caso de uma partícula confinada com energia zero, os resultados 

expostos podem modelar as regiões com maiores tendências a sofrerem ionização em 

moléculas ou nanoestruturas com geometria semelhante à circunferência.   

 

5.3 CURVAS A PARTIR DA CURVATURA  

 

 Nesta seção discutiremos os resultados numéricos obtidos partindo das curvaturas que 

possibilitaram tanto a solução numérica da equação 41, quanto a resolução analítica das 

integrais na equação 12, o que permitiu que encontrássemos as curvas a que as curvaturas 

pertenciam.  

 

5.3.1 Partícula com energia zero confinada em uma curva com ∫  ( )   
 

  
       

 

 Consideramos inicialmente ∫  ( )   
 

  
      , sendo   um número real positivo. 

Assim a função curvatura é dada por:  

 
 ( )    

 

 
 (46) 

 De posse da curvatura, resolvemos as integrais da equação 12 para obter a 

parametrização por comprimento de arco da curva a qual a curvatura da equação 46 pertence: 

 
 ( )  (

 

    
(    (    )      (    )) 

 

    
(   (    )       (    ))) 

(47) 

Visando entender as mudanças causadas por   na curva, variamos os valores deste 

parâmetro inicialmente entre 0 e 1,    = 0,05; 0,1; 0,5 e 0,8. As curvas encontradas são dadas 

na figura 10.  

Os valores    0,05 e 0,1 resultam em curvas que se aproximam a retas. Com o 

aumento do parâmetro há também um aumento da inclinação da reta fazendo com que a curva 

tenda a se tornar uma espiral, evidenciada na curva com     0,8. 
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Figura 10 – Curvas com   ( )    
 

 
 para valores de   entre 0 e 1. 

 

 

Fonte: Autoria própria. 

 

Considerando  ( )    
 

 
·, a equação que modela uma partícula no modo zero 

confinada nas curvas com este tipo curvatura se dá por:  

    ( )

   
    

  

   
 ( ) (48) 

Resolvemos numericamente esta EDO utilizando o RK4 para as curvas da figura 10. 

Os gráficos obtidos para  ( ) são explicitados na figura 11. 

 

Figura 11 – Gráficos de  ( ) para  ( )    
 

 
 com valores de   entre 0 e 1. 
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Fonte: Autoria própria. 

 

 Os gráficos da figura 11 mostram que para   = 0,05 e 0,1, as funções assemelham-se a 

uma reta. Estes resultados são esperados, como visto na seção 4.2.1, já que a curva em que a 

partícula está confinada nestes casos também aproximasse da reta.  Já para os casos em que 

            , as funções de onda apresentam uma tendência a tornarem-se funções 

logarítmicas.  

Contudo, em todos esses casos, como na seção 4.2.1, as funções de onda não atendem 

a condição de contorno, indicando que não é possível confinar uma partícula no estado zero 

de energia nestas curvas.  

Em seguida admitimos   = 1; 2; 3 e 4, e plotamos as curvas, utilizando a equação 47, 

figura 12. 

 

Figura 12 – Curvas com   ( )   
 

 
  para valores de α de 1 a 4. 

 

 

Fonte: Autoria própria 



31 

 

Nestes casos, a curvas encontradas tendem à formação de uma espiral, contudo, como 

esperado, com o aumento de  , tem-se um aumento da curvatura, fazendo com que a curva 

assuma a forma espiralada mais rapidamente.  

Nas espirais em que   = 2; 3 e 4, a linha que atravessa o polo encontra a curva em 

distâncias que obedecem a uma progressão geométrica, o que indica que essas curvas sejam 

exemplos de espirais logarítmicas (LOCKWOOD, 1961).   

 Resolvemos numericamente a equação 48 para as curvas da figura 12. Os gráficos da 

função de onda, figura 13, demonstram que para   = 1 há um comportamento ainda 

semelhante a uma função logarítmica, entretanto para   = 2; 3 e 4 apresenta-se um 

comportamento senoidal.  

 

Figura 13 – Gráficos de Ψ(s) para   ( )  
 

 
 com valores de α de 1 a 4. 

 

 

 

Fonte: Autoria própria 
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 Nas funções de onda senoidais, há um aumento da amplitude e do comprimento de 

onda com o aumento de  . Como, no caso em estudo,  ( ) e   são inversamente 

proporcionais, os maiores valores de   são dados nas regiões de menores curvaturas, figura 

14. 

  

Figura 14 – Gráficos de  ( )    
 

 
  para os valores de   estudados. 

 

Fonte: Autoria Própria 

 

 Com isso, os resultados indicam que os elétrons mais ionizáveis, em estruturas 

químicas com geometria de espiral logarítmica, devem se encontrar nas regiões mais afastadas 

do centro da espiral.   

 

5.3.2 Partícula com energia zero confinada em uma curva com ∫  ( )   
 

  
   √  

 

 Partindo de ∫  ( )   
 

  
   √  temos que:   

 
 ( )   

 

 √ 
 (49) 

 Resolvendo as integrais da equação 12 com a curvatura da equação 49, obtemos:  

 
 ( )  (

 

  
( √     ( √  )      ( √  )) 

 

  
(   ( √  )     √      ( √  ))) 

 (50) 
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 A figura 15 apresenta as curvas parametrizadas pela equação 50, considerando   = 

0,05; 0,1; 0,5 e 0,8. Com o aumento de   as curvas tendem à formação de uma espiral, sendo 

esta forma assumida em    = 0,5 e 0,8. Como esperado, na curva com   = 0,8, nota-se uma 

formação mais acelerada da espiral, dado que esta apresenta os maiores valores para  ( ) 

dentre os valores de   estudados.  

 As espirais encontradas apresentam voltas sucessivas espaçadas igualmente, o que 

indica que as curvas são exemplos de espirais de Arquimedes (LOCKWOOD, 1961).   

 

Figura 15 – Curvas com   ( )   
 

 √ 
  para valores de α entre 0 e 1 

 

 
Fonte: Autoria própria. 

 

 A EDO que modela o problema do confinamento no modo zero para esta curvatura é 

dada por:  

    ( )

   
    

  

   
 ( ) (51) 

 Calculamos numericamente a resolução da equação 51, para os valores de   menores 

que 1 estudados, figura 16. Nas curvas com   = 0,05 e 0,1 as funções de onda não atendem a 

condição de contorno, o que indica a impossibilidade do confinamento da partícula. Porém, 

para as curvas espirais,   = 0,5 e 0,8, as funções de onda apresentam comportamentos 

senoidais, com maiores frequências em   = 0,8.  

  Nota-se ainda, que as áreas das funções de onda são maiores nos valores de   mais 

elevados, o que indica que a partícula tende a se encontrar nas regiões com maiores 

curvaturas, ou seja, nas regiões mais afastadas dos polos das espirais.   
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Figura 16 – Gráficos de Ψ(s) para  ( )   
 

 √ 
 com valores de α entre 0 e 1. 

 

     

Fonte: Autoria própria. 

 

 Estudamos ainda os casos em que   = 1; 2; 3 e 4. As curvas encontradas, figura 17, 

também formam espirais de Arquimedes e, como esperado, com o aumento de   há um 

aumento nos valores da curvatura, fator que acelera a formação da espiral.  

Nos casos em que   = 3 e 4, a curvatura assume valores muito maiores do que nos 

casos    = 1 e 2, isto faz com que   = 3 e 4 se assemelhem a discos quando plotadas juntas às 

curvas com    = 1 e 2. Assim, para a melhor visualização, ainda na figura 17 temos as curvas 

encontradas plotadas separadamente.  
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Figura 17 – Curvas com   ( )   
 

 √ 
  para valores de α de 1 a 4. 

 

 

     

 

    

Fonte: Autoria Própria. 

 

As funções  ( ), obtidas numericamente para cada curva da figura 17, podem ser 

visualizadas na figura 18. Os comportamentos senoidais apresentados pelas funções de onda 

concordam com os resultados obtidos anteriormente para valores de   menores que 1, dado 
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que todas as curvas encontradas são espirais. Há ainda o aumento da frequência de acordo 

com o aumento de  .  

 

Figura 18 – Gráficos de Ψ(s) para  ( )   
 

 √ 
  com valores de α entre 1 e 4. 

        

 

        

Fonte: Autoria própria. 

 

 Além disso, os picos com maiores áreas estão presentes nas regiões com maiores 

valores de      A figura 19 apresenta os gráficos da função curvatura para cada   estudado. 

Nestes, é possível analisar que os valores mais elevados de   resultam nas menores curvaturas 

das curvas. Com isso, os resultados indicam que estruturas químicas com a geometria espiral 

de Arquimedes tendem a sofrer ionização nas regiões mais afastadas do polo da espiral.  
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Figura 19 – Gráficos de  ( )   
 

 √ 
  para os valores de α estudados. 

 

Fonte: Autoria própria. 

 

5.4 CURVATURA DE CURVAS DESCONHECIDAS 

 

Nesta seção, discutiremos os resultados obtidos para o estudo da partícula no modo 

zero confinada em curvas que possuem curvaturas que impossibilitam a obtenção das 

soluções analíticas das integrais presentes na equação 12.  

As curvaturas estudadas foram:     ( ) e     ( ), para   = 1; 2; 3 e 4,    ( )e   , 

para    = 1/2; 1; 3/2 e 2.   

Contudo, encontramos na literatura as curvas, calculadas numericamente, para os 

casos em que   = 1 nas curvaturas     ( )      ( ) e   , figura 20 (PICADO, 2006). 

 

Figura 20 – Curvas com curvaturas (A)     ( ) , (B)     ( )  e (C)  , calculadas 
numericamente. 

 

 

         

A B 
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Fonte: Picado (2006).  

 

5.4.1 Partícula com energia zero confinada em uma curva com   ( )      ( ). 

 

 Considerando  ( )      ( ) na equação 41, temos que: 

    ( )

   
    

     ( )

 
 ( ) (52) 

 A figura 21 apresenta os resultados numéricos obtidos para a equação 52, sendo   = 1; 

2; 3 e 4. As funções de onda apresentaram um comportamento senoidal, com diminuição da 

frequência e aumento de amplitude de acordo com o aumento de  . Porém para um mesmo  , 

não há mudanças significativas na área dos picos com a variação de  , indicando, como no 

caso do confinamento em circunferências (seção 4.2.2), que as regiões com maiores 

probabilidades de encontrar a partícula são equidistantes.    

 

Figura 21 – Gráficos de Ψ(s) para  ( )      ( ). 

   

C 
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Fonte: Autoria própria. 

 

5.4.2 Partícula com energia zero confinada em uma curva com   ( )      ( )   

 

 Para curvas com  ( )      ( ), a EDO que modela o confinamento no modo zero 

se torna:  

    ( )

   
    

     ( )

 
 ( ) (53) 

 Consideramos   = 1; 2; 3 e 4 para resolver a EDO utilizando o método RK4, figura 

22. Os resultados obtidos para as  ( ) encontradas demonstram um comportamento senoidal, 

com diminuição da frequência e aumento da amplitude onda de acordo com o aumento de  . 

A variação de   não causa mudanças significativos para os picos, em um dado   , o que indica 

uma densidade eletrônica distribuída igualmente em regiões equidistantes na curva.  

 

Figura 22 – Gráficos de Ψ(s) para  ( )      ( ). 
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Fonte: Autoria própria. 

 

5.4.3 Partícula com energia zero confinada em uma curva com   ( )        

 

Considerando uma curva plana com   ( )     , tem-se a seguinte equação de 

Schrödinger no modo zero: 

    ( )

   
    

   

 
 ( ) (54) 

Calculamos numericamente a resolução da EDO com     
 

 
      

 

 
 e  , figura 23. As 

soluções apresentaram aumento da frequência e diminuição da amplitude de onda com o 

aumento de  . Para um mesmo valor de  , há uma diminuição da área dos picos da função de 

onda com o aumento de  .    

 

Figura 23 – Gráficos de  ( ) para  ( )     . 
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Fonte: Autoria própria. 

 

 A figura 24 apresenta os gráficos para as funções curvaturas estudadas. As região com 

menores valores de   fornecem os menores valores para  ( ). Assim, os resultados para  ( ) 

evidenciam que os elétrons mais ionizáveis tendem a se encontrar nas regiões com menores 

curvaturas nas curvas estudadas.  

 

Figura 24 – Gráficos de  ( )      para os valores de α estudados. 

 

 

Fonte: Autoria própria. 

 

5.4.4 Partícula com energia zero confinada em uma curva com   ( )      ( )   

 

A EDO que modela o confinamento extrínseco de uma partícula no modo zero em 

curvas com  ( )      ( ) se apresenta como: 
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    ( )

   
    

    ( )

 
 ( ) (55) 

 As resoluções numéricas da equação 54, considerando     
 

 
      

 

 
 e  , são 

apresentadas na figura 25. As funções de onda apresentaram comportamento semelhante aos 

resultados obtidos na seção 4.4.3, com comportamentos senoidais, além do aumento da 

frequência e diminuição da amplitude de onda com o aumento dos valores de  .  

 

Figura 25 – Gráficos de  ( ) para  ( )      ( ). 

 

         

          

Fonte: Autoria própria. 

 

 A área dos picos nas  ( ) diminui com o aumento de  . Analisando os gráficos das 

funções curvaturas estudadas, figura 26, nota-se que os menores valores de   resultam nos 

menores valores de curvatura.  

 Assim, moléculas e nanoestruturas com  ( )      ( ) tendem a ter seus elétrons 

mais facilmente ionizáveis nas regiões com menores curvaturas.   
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Figura 26 – Gráficos de  ( )      ( ) para os valores de α estudados. 

 

 

Fonte: Autoria própria. 
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6 CONCLUSÃO 

 

Foi possível resolver numericamente equações de Schrödinger no modo zero, que 

modelam o confinamento de partículas no limite de ligação em regiões unidimensionais, 

considerando a abordagem extrínseca dada por Da Costa.  

As análises qualitativas das áreas dos picos das funções de onda permitiram identificar 

as regiões com maiores tendências de sofrerem ionização. Assim, o estudo de partículas 

confinadas em regiões unidimensionais pode fornecer uma aproximação das regiões mais 

facilmente ionizáveis nas moléculas e nanoestruturas com geometrias semelhantes às curvas 

estudadas. Contudo, serão necessários futuros cálculos computacionais para confirmação da 

hipótese.  

Estruturas com geometrias próximas a uma reta, possivelmente tem seus elétrons 

ionizados com energias inferiores a 0.  As estruturas circulares devem sofrer ionização em 

regiões equidistantes. Por outro lado, moléculas com geometrias semelhantes as espirais de 

Arquimedes e Logarítmica, tendem a ter os elétrons mais facilmente ionizáveis em regiões 

mais afastadas do polo da espiral.   

Conseguimos ainda, partindo de algumas funções curvaturas, prever as regiões com 

maiores tendências de ionização em curvas ainda não definidas analiticamente.  

Como perspectivas do trabalho, esperamos encontrar outras curvas com 

parametrizações por comprimento de arco e curvaturas conhecidas, que possibilitem a solução 

numérica da EDO que modela o confinamento extrínseco unidimensional no modo zero. 

Além disso, pretendemos calcular numericamente as integrais que fornecem as 

parametrizações das curvas que resolvemos numericamente o problema do confinamento a 

partir das suas curvaturas. 
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APÊNDICE A – ALGORITMO UTILIZADO PARA A COMPARAÇÃO DO RK4 

COM UMA EDO DE PRIMEIRA ORDEM E OUTROS MÉTODOS NUMÉRICOS. 

 

Alguns comentários, que auxiliam a compreensão do algoritmo abaixo, estão 

destacados em negrito. 

 

function y = solucaoedoprimeiraordem (x) 

    y = [1+exp(x^2/2)]^(-1) 

endfunction  //Definimos a solução analítica da EDO de primeira ordem estudada. 

 

function z=g(x, y) 

    z = x*y^2 - x*y; 

endfunction //Definimos a EDO de primeira ordem que será solucionada numericamente, 

onde z = 
  

  
. 

 

function [x, y] =euler (a, b, h, y0). 

    x = a:h:b 

    n = length(x) 

    y(1) = y0 

    for i = 1:n-1 

        y(i+1) = y(i) + g(x(i),y(i))*h; 

    end 

endfunction 

 

function [x, y]=heun(a, b, h, y0) 

    x = a:h:b 

    n = length(x) 

    y(1) = y0 

    for i = 1:n-1 

        k1 = g(x(i),y(i)) 

        k2 = g(x(i)+h, y(i) + k1*h) 

        k = 0.5*(k1+k2) 

        y(i+1) = y(i) + k*h; 
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    end 

endfunction 

 

function [x, y]=PontoMedio(a, b, h, y0) 

    x = a:h:b 

    n = length(x) 

    y(1) = y0 

    for i = 1:n-1 

        k1 = g(x(i),y(i)) 

        k2 = g(x(i)+h/2, y(i) + k1*h/2) 

        y(i+1) = y(i) + k2*h; 

    end 

endfunction 

 

function [x, y]=RK4(a, b, h, y0) 

    x = a:h:b 

    n = length(x) 

    y(1) = y0 

    for i = 1:n-1 

        k1 = g(x(i),y(i)) 

        k2 = g(x(i)+h/2, y(i) + k1*h/2) 

        k3 = g(x(i)+h/2, y(i)+k2*h/2) 

        k4 = g(x(i)+h, y(i)+k3*h) 

        k = (k1+2*k2+2*k3+k4)/6 

        y(i+1) = y(i) + k*h; 

    end 

endfunction //Programamos as rotinas dos métodos numéricos utilizados para a 

resolução da EDO de primeira ordem estudada: Euler, Heun, ponto médio e RK4. 

 

[x,ye] = euler(-3.9,3.9,.1, 0.0004977) 

[x,yh] = heun(-3.9,3.9,.1, 0.0004977) 

[x,ypm] = PontoMedio(-3.9,3.9,.1, 0.0004977) 
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[x,yrk4] = RK4(-3.9,3.9,.1, 0.0004977)  //Fornecemos ao programa os parâmetros 

numéricos utilizados para o cálculo da solução numérica da EDO de primeira ordem 

estudada.  

 

plot(x',ye,'o') 

plot(x',yh,'x') 

plot(x',ypm,'+') 

plot(x',yrk4,'^')  //Damos o comando para o plot dos gráficos numericamente obtidos.  

 

a = -3.9:.01:3.9 

y = solucaoedoprimeiraordem (a) 

plot (a,y,'-')  //Damos o comando para o plot da solução analítica e os parâmetros para a 

extensão do gráfico. 
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APÊNDICE B – ALGORITMO UTILIZADO PARA A COMPARAÇÃO DO RK4 

COM UMA EDO DE SEGUNDA ORDEM E OUTROS MÉTODOS NUMÉRICOS. 

 

function y = solucaoedosegundaordem(x) 

    y = exp(x)+2*exp(x/2) 

endfunction  //Definimos a solução analítica da EDO de primeira ordem estudada. 

 

function t=gy(x, y, z) 

    t = z; 

endfunction  //Definimos, como uma função, uma das equações do sistema de EDOs de 

primeira ordem, obtido pela EDO de segunda ordem, onde z = 
  

  
. 

 

function s=gz(x, y, z) 

    s = (3*z-y)/2; 

endfunction  //Definimos, como uma função, uma das equações do sistema de EDOs de 

primeira ordem, obtido pela EDO de segunda ordem, onde s = 
  

  
. 

 

function [x, y, z]=eulersistema(a, b, h, y0, z0) 

    x = a:h:b 

    n = length(x) 

    y(1) = y0 

    z(1) = z0 

    for i = 1:n-1 

        k1s = gy(x(i),y(i),z(i)) 

        k1v = gz(x(i),y(i),z(i)) 

        y(i+1) = y(i) + k1s*h; 

        z(i+1) = z(i) + k1v*h;       

    end 

endfunction 

 

function [x, y, z]=heunSistema(a, b, h, y0, z0) 

    x = a:h:b 

    n = length(x) 
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    y(1) = y0 

    z(1) = z0 

    for i = 1:n-1 

        k1s = gy(x(i),y(i),z(i)) 

        k1v = gz(x(i),y(i),z(i)) 

        k2s = gy(x(i)+h, y(i) + k1s*h, z(i) + k1v*h) 

        k2v = gz(x(i)+h, y(i) + k1s*h, z(i) + k1v*h) 

        y(i+1) = y(i) + (k1s+k2s)*h/2; 

        z(i+1) = z(i) + (k1v+k2v)*h/2;     

    end 

endfunction 

 

function [x, y, z]=pontoMedioSistema(a, b, h, y0, z0) 

    x = a:h:b 

    n = length(x) 

    y(1) = y0 

    z(1) = z0 

    for i = 1:n-1 

        k1s = gy(x(i),y(i),z(i)) 

        k1v = gz(x(i),y(i),z(i)) 

        k2s = gy(x(i)+h/2, y(i) + k1s*h/2, z(i) + k1v*h/2) 

        k2v = gz(x(i)+h/2, y(i) + k1s*h/2, z(i) + k1v*h/2) 

        y(i+1) = y(i) + k2s*h; 

        z(i+1) = z(i) + k2v*h; 

    end 

endfunction 

 

function [x, y, z]=rk4Sistema(a, b, h, y0, z0) 

    x = a:h:b 

    n = length(x) 

    y(1) = y0 

    z(1) = z0 

    for i = 1:n-1 

        k1s = gy(x(i),y(i),z(i)) 
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        k1v = gz(x(i),y(i),z(i)) 

        k2s = gy(x(i)+h/2, y(i) + k1s*h/2, z(i) + k1v*h/2) 

        k2v = gz(x(i)+h/2, y(i) + k1s*h/2, z(i) + k1v*h/2) 

        k3s = gy(x(i)+h/2, y(i) + k2s*h/2, z(i) + k2v*h/2) 

        k3v = gz(x(i)+h/2, y(i) + k2s*h/2, z(i) + k2v*h/2) 

        k4s = gy(x(i)+h, y(i) + k1s*h, z(i) + k3v*h) 

        k4v = gz(x(i)+h, y(i) + k1s*h, z(i) + k3v*h) 

        y(i+1) = y(i) + (k1s+2*k2s+2*k3s+k4s)*h/6; 

        z(i+1) = z(i) + (k1v+2*k2v+2*k3v+k4v)*h/6; 

    end 

endfunction  //Programamos as rotinas dos métodos numéricos utilizados para a 

resolução da EDO de segunda ordem estudada: Euler, Heun, ponto médio e RK4. 

 

[x,ye,ze] = eulersistema(0,4,0.2,3,2) 

[x,yh,zh] = heunSistema(0,4,0.2,3,2) 

[x,ypm,zpm] = pontoMedioSistema(0,4,0.2,3,2) 

[x,yrk4,zrk4] = rk4Sistema(0,4,0.2,3,2) //Fornecemos ao programa os parâmetros 

numéricos utilizados para o cálculo da solução numérica da EDO de primeira ordem 

estudada.  

 

plot(x,ye,'+') 

plot(x,yh,'x') 

plot(x,ypm,'o') 

plot(x,yrk4,'^') //Damos o comando para o plot dos gráficos numericamente obtidos.  

 

a = 0:.02:4 

y = solucaoedosegundaordem (a) 

plot (a,y,'-')  //Damos o comando para o plot da solução analítica e os parâmetros para a 

extensão do gráfico. 
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APÊNDICE C – ALGORITMO UTILIZADO PARA A RESOLUÇÃO DA EQUAÇÃO 

DE SCHRÖDINGER NO MODO ZERO UTILIZANDO O RK4. 

 

function w=gy(x, y, z) 

    w = z 

endfunction //Definimos, como uma função, uma das equações do sistema de EDOs de 

primeira ordem, obtido pela EDO de segunda ordem, onde z = 
  

  
. 

 

function t=gz(x, y, z) 

    t = - (k(s))^2/4*y 

endfunction //Definimos, como uma função, uma das equações do sistema de EDOs de 

primeira ordem, obtido pela EDO de segunda ordem, onde t = 
  

  
. Devemos substituir 

k(s) pela função curvatura desejada. 

 

function [x, y, z]=rk4daCostamodozero(a, b, h, y0, z0) 

    x = a:h:b 

    n = length (x) 

    y(1) = y0 

    z(1) = z0 

    for i = 1:n-1 

        k1y = gy(x(i),y(i),z(i)) 

        k1z = gz(x(i),y(i),z(i)) 

        k2y = gy (x(i) + h/2, y(i) + k1y*h/2, z(i) + k1z*h/2) 

        k2z = gz (x(i) + h/2, y(i) + k1y*h/2, z(i) + k1z*h/2) 

        k3y = gy (x(i) + h/2, y(i) + k2y*h/2, z(i) + k2z*h/2) 

        k3z = gz (x(i) + h/2, y(i) + k2y*h/2, z(i) + k2z*h/2) 

        k4y = gy (x(i) + h, y(i) + k3y*h, z(i) + k3z*h) 

        k4z = gz (x(i) + h, y(i) + k3y*h, z(i) + k3z*h) 

        ky = (k1y + 2*k2y + 2*k3y + k4y)/6 

        kz = (k1z + 2*k2z + 2*k3z + k4z)/6 

        y(i+1) = y(i) +ky*h 

        z(i+1) = z(i) +kz*h 

    end 
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endfunction //Programamos as rotinas do RK4 utilizado para a resolução da EDO de 

segunda ordem estudada. 

 

[x,y,z] = rk4daCostamodozero (        ,       ,  ,  (        ), 
  (        )

  
 ) //Fornecemos ao 

programa os parâmetros numéricos utilizados para o cálculo da solução numérica da 

EDO de primeira ordem estudada. Devemos substituir os parâmetros numéricos, 

expressos aqui de maneira geral, pelos valores utilizados no estudo de uma determinada 

curvatura.  

 

plot(x',y,'o') //Damos o comando para o plot dos gráficos numericamente obtidos.  

 

 

 


