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RESUMO

A equacdo de Schrodinger vem sendo resolvida numericamente por diversos métodos de
Runge-Kutta. O estudo desta equacdo considerando a energia do sistema sendo nula, entre
diversas outras aplicagdes, permite a analise do estado limite de ligacdo de uma particula em
um dado sistema quantico. Assim, no presente trabalho resolvemos a equagdo em seu modo
zero, considerando uma abordagem extrinseca do confinamento em uma regido
unidimensional, utilizando o método de Runge-Kutta de 42 ordem mais utilizado para
resolugdes de EDOs. Inicialmente, obtivemos numericamente as fungdes de onda para uma
particula confinada em uma reta e em circunferéncias de diferentes raios, por serem curvas
com parametrizacdes por comprimento de arco conhecidas. Em seguida estudamos curvas a
partir de suas curvaturas, o que permitiu o estudo do confinamento em espirais de Arquimedes
e em espirais logaritmicas. Por fim, estudamos o confinamento em curvas hipotéticas que
ainda nao possuem parametrizacOes definidas. Os resultados obtidos possibilitaram a analise
das regides nas curvas com maiores tendéncias de sofrerem ionizagdo, podendo ser
possivelmente utilizados como modelos para a ionizagcdo de moléculas e nanoestruturas com
geometrias semelhantes as estudadas.

Palavras-chave: Runge-Kutta. Confinamento quantico. Curvas planas. Modo Zero.



ABSTRACT

The Schrodinger equation has been solved numerically by several Runge-Kutta methods. The
study of this equation considering the system energy being zero, among several other
applications, allows an analysis of the binding limit state of a particle in a given quantum
system. Thus, in the present work we solve the equation in its zero mode, considering an
extrinsic approach to confinement in a one-dimensional region, using the 4th order Runge-
Kutta method most used for ODE solutions. Initially, we obtained numerically the
wavefunctions for a particle confined in a straight line and in circles of different radius, as
they are curved with parameterizations by arc length file. Then we study curves from their
curvatures, which advises the study of confinement in Archimedean spirals and in logarithmic
spirals. Finally, we study confinement in hypothetical curves that do not yet have defined
parameterizations. The results obtained made it possible to analyze the regions in the curves
with greater tendencies to occur ionization, which could be used as model for the ionization of
molecules and nanostructures with geometries similar to those studied.

Keywords: Runge-Kutta. Quantic Constrain. Plane Curves. Zero Energy.
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1 INTRODUCAO

Sistemas quanticos podem ser estudados utilizando a Equacdo Diferencial Ordinaria
(EDO) de segunda ordem nomeada como equagdo de Schrddinger estacionaria, onde
admitisse que o sistema ndo evolui com o tempo (SCHRODINGER, 1926 apud
NUSSENZVEIG, 2014).

O operador Hamiltoniano da equacdo de Schrddinger deve ser modelado de acordo
com o sistema em estudo. Uma possivel abordagem é a modelagem intrinseca do operador,
onde apenas a regido que contém a particula é considerada existente, ja a abordagem
extrinseca leva em consideracdo ndo apenas a regido onde a particula estd confinada, mas
também o ambiente no qual este sistema quantico estd contido (SILVA, BASTOS e
RIBEIRO, 2017).

Da Costa (1981) propde um Hamiltoniano, extrinsecamente modelado, para o
confinamento quéntico unidimensional, onde o operador possui um termo potencial
geométrico, dependente da curvatura da regido, sendo este responsavel pelo confinamento da
particula.

O modo zero da Equacédo de Schrodinger é dado quando a energia do sistema quantico
em estudo é igual a zero. Este caso particular da equacdo tem sido estudado por apresentar
aplicacoes fisicas, como a descricdo de sistemas com particulas ultrafrias (PADE, 2009), além
de possibilitar a descoberta de termos potenciais que permitem estados com energia zero
(KOBAYASHI E SHIMBORI, 2002), ou ainda, permitir o estudo do estado limite de ligacdo
de uma particula quéntica confinada em uma certa regido (DABOUL e NIETO, 1994).

Em muitos casos, EquacBes Diferenciais Ordinarias (EDOs) ainda ndo possuem
solucdes analiticas obtidas ou apresentam solugdes ndo triviais. Assim, métodos numéricos
tém sido utilizados para solucionar EDOs nas mais diversas areas do conhecimento. Dentre
esses, destaca-se 0 método de Runge-Kutta de 42 ordem (RK4) classico, um método numérico
de passo Unico comumente utilizado por possuir simples implementacéao e fornecer resultados
efetivos (CHAPRAS e CANALE, 2016).

Diferentes métodos de Runge-Kutta tém sido desenvolvidos e implementados para a
resolucéo de diversos casos particulares da equacdo de Schrodinger (ANASTASSI e SIMOS,
2007), porém ndo encontramos na literatura solugdes para o modo zero da equagdo de
Schrodinger, considerando a abordagem extrinseca dada por Da costa (1981) para o
confinamento quantico unidimensional. Portanto, o presente trabalho pretende resolver

numericamente a EDO que modela este problema, utilizando o RK4.
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2 FUNDAMENTAGCAO TEORICA

2.1 GEOMETRIA DIFERENCIAL DE CURVAS

Nesta secdo, abordaremos nogOes de geometria diferencial de curvas (DO CARMO,
2016), importantes para a compreensdo do presente trabalho. Durante a discussao, as curvas
contidas no R? (PICADO, 2006) serdo mais constantemente comentadas por integrarem 0s
objetivos do trabalho.

Primeiramente, discorremos acerca da parametrizacdo de curvas, em seguida sera
discutida a parametrizacdo por comprimento de arco e por fim serd abordada a nogéo de

curvatura.

2.1.1 Parametrizacéo de curvas

No estudo da geometria analitica, uma curva é considerada como um subconjunto de
pontos pertencentes ao R", porém na geometria diferencial surge o conceito da
parametrizagdo de curvas contidas no R™, que consiste em abordar uma curva como a imagem
de uma funcéo o que leva os pontos de um intervalo [a, b] para 0 R™, como ilustra a Figura
1.

Figura 1— Parametriza¢do de uma curva pela fungio o.

o (t)
(_ﬁa
—t
a t b

Fonte: Autoria propria.

A funcdo o é continua e diferenciavel e pode ser definida formalmente como:
o:[ab] > R" (1)
Com a parametrizacdo, os pontos da curva sdo dados por o(t), sendo t € [a,b].

Como a curva esta inserida no R™, temos que:
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o(t) = (x1(2), %2 (0), ..., % (1)) (2)

As chamadas fun¢des coordenadas, x;(t),x,(t),...,x,(t), sdo as coordenadas do

ponto o(t) pertencente a curva e agem como funcgdes de t, pois levam um ponto no intervalo
[a, b] aum numero real.

Como a funcdo o € diferenciavel, é possivel encontrar o vetor tangente em o(t), dado

na equacéo 3 e representado na Figura 2.

o' (1) = (x1"(8), %2"(8), oo, 27" (1)) 3)

Figura 2— Curva parametrizada pela fun¢do 6 com vetor tangente a curva, c'(t), no ponto o(t).

o(t) *
o) —i
a t b

Fonte: Autoria prépria.

Para exemplificar a parametrizagdo de uma curva, podemos considerar uma
circunferéncia contida no plano, com raio r e centro na origem do plano cartesiano, Figura 3.
Se abordarmos a curva como subconjunto do plano, temos sua definicdo como:

{(vy)e R%Ex?+y? =12} (4)

Figura 3— Circunferéncia contida no R?, com raio r e centro na origem do plano cartesiano.

¥y

(x,¥) =(rcos@,rsin®)

Fonte: Autoria prépria

Contudo, podemos considerar a curva como resultado da parametriza¢do pelo angulo

0, formado entre r e 0 eixo x do plano cartesiano, assim:
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o(0) = (rcos6,rsin0) (5)
Com isso parametrizamos a circunferéncia, utilizando a funcéo o, que leva pontos do

intervalo que contém 8 para o R2.

o:[0,2r] - R? (6)
E também possivel obter o vetor tangente ao ponto ¢(8), dado por:
0'(0) = (—rsin0,r cos 0) (7)

2.1.2 Parametrizacgéo por comprimento de arco

Para uma dada curva parametrizada, o : [a,b] - R™, comt € [a,b], podemos definir

seu comprimento como:

b
L(o) = f o' (©dt @)

Dizemos que o : [a,b] » R™ é uma curva parametrizada pelo comprimento de arco
se:
L(o/jqs) =t—a VtE [ab] 9)
Ou seja, a distancia de a até t, no intervalo, é exatamente o comprimento de o(a) até
o(t), na curva. Portanto, a partir das equacdes 8 e 9, temos que ¢ é curva parametrizada pelo
comprimento de arco se, e somente Se, 0 vetor tangente & curva tem comprimento constante
igual a 1.
'Ol =1 V¢teE [ab] (10)
Note que apenas curvas regulares, isto é o'(t) # 0 para todo t € [a,b], podem ser
parametrizadas por comprimento de arco.
E comumente adotada a variavel s para curvas parametrizadas por comprimento de

arco. Neste texto adotaremos esta convengéao.
2.1.3 Curvatura

A curvatura, k(t), de uma curva plana o (t), pode ser entendida como uma medida do
quanto a curva se afasta de estar contida em uma reta.

Para uma curva parametrizada por comprimento de arco, sua curvatura em um dado
ponto a(s) equivale a taxa de variacdo do vetor tangente & curva, ou seja, 0 mddulo da

segunda derivada da curva neste ponto.
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k(s) = lla”(s)l (11)

O teorema fundamental das curvas planas garante que dada uma curvatura existe uma

Unica curva plana associada e vice-versa, a menos de sua rotacdo. Como consequéncia,

podemos encontrar a parametrizacdo de uma curva plana a partir de sua curvatura da seguinte
forma (PICADO, 2006):

o(s) = (j: cos <£sk(s) ds) ds,f: sen (ij(s) ds) ds) (12)

2.2 EQUACAO ESTACIONARIA DE SCHRODINGER

A equacdo estaciondria de Schrodinger (1926, apud NUSSENZVEIG, 2014) é uma
equacdo de autovalor comumente utilizada nos estudos de sistemas quanticos que nao
evoluem com o tempo. Nesta equacdo o operador Hamiltoniana o (H) é aplicado sobre uma
funcdo de onda (¥), resultando na energia associada ao sistema, E, e na prépria ¥, o que faz
com que esta seja uma autofungédo na equagéo (LIMA, 2014).

AY = E¥ (13)

A equacdo 13 é o equivalente quantico da equacdo classica de energia total de um
sistema, assim o Hamiltoniano é o resultado da soma de outros dois operadores representantes
da energia cinética () e da energia potencial (K) do sistema em estudo (NUSSENZVEIG,
2014).

H=TV+K (14)

Com isso, o operador H deve ser modelado de acordo com o sistema quéntico a ser
estudado, uma vez que cada Hamiltoniano fornece um espectro de energia dado por E.

Como exemplo, temos o problema da particula confinada em uma curva o contida no
espaco Euclidiano. Neste sistema o Hamiltoniano pode ser modelado considerando a
abordagem intrinseca, onde se considera que existe apenas o0 sistema da regido do
confinamento e a regido que o contém ndo € abordada (BASTOS et al, 2012), como
representado na figura 4. Nesta abordagem o operador H é composto apenas pelo termo
cinético:

o h? d?

S S 15
H=7 o 25Z (15)

Onde h é a constante reduzida de Planck ( h/2m ), m é a massa efetiva dessa particula

e s € a variavel comprimento de arco.
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Figura 4 — Representagdo da abordagem intrinseca para o confinamento unidimensional de
uma particula com massa especifica m na regido o.

(o)

Fonte: Autoria propria

Contudo, ainda considerando o mesmo sistema, podemos utilizar a abordagem
extrinseca para a modelagem do Hamiltoniano, onde a existéncia do ambiente no qual esta
inserido o sistema em questdo € levada em consideracdo. Como na figura 5, onde tanto o
espaco euclidiano tridimensional, ao qual o pertence, quanto a propria curva o, que contém a
particula, sdo abordados.

Figura 5 — Representacdo da abordagem extrinseca para o confinamento unidimensional de
uma particula com massa especifica m na regidao o contida no espago euclidiano
tridimensional.

Fonte: Autoria prépria

Uma modelagem extrinseca deste problema foi desenvolvida por Da Costa (1981).
Nesta, a particula esta confinada em uma curva ou superficie imersa no espaco Euclidiano, e o
confinamento é mantido por um potencial atrativo presente sobre toda a regido. Este potencial
é sensivel a variacdo da curvatura da curva, k(s).

Assim, o Hamiltoniano proposto por Da Costa para uma particula confinada em uma
curva tem seu termo cinético sendo o mesmo da abordagem intrinseca, porém possui ainda

um termo de potencial geométrico dependente de k(s).

H=————— k(s)? (16)
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2.2.1 Modo zero

O modo zero da equacdo Schrodinger é dado quando a energia do sistema quantico é
zero, E = 0.

O estudo da equacao neste modo, além de tornar mais simples a sua resolucéo, modela
sistemas fisicos existentes (MAKOWSKI e GORSKA, 2006).

Uma importante consequéncia em abordar o modo zero da equacgdo Schrédinger no
contexto do presente trabalho € a possibilidade do estudo do estado limite de ligacdo de uma
particula (DABOUL e NIETO, 1994).

Geralmente sistemas com E < 0 sdo tidos como estados ligados, ja sistemas com
E > 0sdo tratados como estados ndo ligados. Assim, uma possivel interpretacdo para
sistemas com E = 0 € a de se tratar da transi¢do do estado ligado para o estado ndo ligado.
Entretanto, neste estado transitdrio ja é possivel definir qual o estado de ligacdo existente.

A funcgdo de onda que rege o sistema quéntico com E = 0 determinara o estado de
ligacdo do sistema (DABOUL e NIETO, 1994). Se ¥(x) - 0 comx — +oo,oucomx = 0 e
x — L, para um sistema confinado em uma regido com tamanho L e inicio em x = 0, temos

o estado ligado. Caso contrario, trata-se de um sistema com estado néo ligado.
2.2.2 Interpretacdo probabilistica da fungdo de onda

Em 1928, Max Born propds uma interpretacdo fisica para a funcdo de onda de uma
certa particula, ¥(x) no caso unidimensional estacionario. Nesta intepretacdo
(NUSSENZVEIG, 2014), a probabilidade de encontrar uma particula quantica numa regido
entre x e x + dx é dado pelo produto entre o quadrado do médulo da fungdo de onda com
dx:

P(x)dx = |¥(x)|*dx (17)
onde P(x) é a densidade de probalilidade em x.

Assim, a area sob |¥(x)|? em uma regido de x, a x determina a probabilidade de se

encontrar a particula quéntica, regida por ¥ (x), nesta regido:

]xP(x) dx = jxll}’(x)lzdx (18)

Xo Xo
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2.3 METODO DE RUNGE-KUTTA DE 42 ORDEM (RK4)

O método Runge-Kutta de ordem 4 é um dos métodos numéricos de passo Unico
(CHAPRAS e CANALE, 2016). Esses métodos se caracterizam por partirem de um ponto
inicial conhecido (x,;y,) para, através do calculo da inclinagdo ¢, calcular-se os pontos
seguintes pertencente a curva que resolve a equacdo diferencial ordenada (EDO) em estudo,
da seguinte maneira:

Yi=Yi-1toh (19)

Onde i é um numero pertencente ao conjunto dos numeros naturais de 1 a n que
indica o atual par ordenado que esta se esta calculando, sendo n 0 nimero de pontos que se
deseja encontrar. O passo, h, equivale a distancia entre a abcissa de um ponto qualquer (x;_;)
e a abcissa do ponto seguinte (x;) que se pretende calcular. Assim como o ponto inicial
(x0; ¥o), todos estes parametros devem ser previamente determinados para a implementacédo
do método de passo Unico escolhido.

X;i= Xi_1+h (20)

Nos métodos de passo Unico, o0 ponto seguinte € sempre calculado a partir da
inclinacdo ¢ da reta que passa pelo ponto anteriormente calculado. Quanto melhor o método,
maior serd a aproximacdo entre o valor estimado e o valor exato, porém normalmente
desconhecemos este Gltimo. A maneira como ¢ € calculada é o que difere os métodos de
passo Unico.

No método Runge-Kutta de ordem 4, em especifico, sdo calculadas 4 inclinagoes (¢,

@5, @3 € @,) paraentdo calcular-se a média ponderada destas, obtendo-se assim a inclinacao

Q.
Consideremos uma EDO de primeira ordem, dada de forma genérica na equacéo 21.
dy
CAN . 21
—=g(x) (21)

Existem infinitos possiveis métodos RK4 para a resolucdo numérica desta EDO,
contudo no mais utilizado a inclinagdo ¢, € calculada no inicio do intervalo atual, em seguida,
partindo de ¢, calcula-se ¢, na metade do intervalo estudado (x;_; + h/2). Utilizando ¢,
encontra-se uma terceira inclinagdo, ¢4, também na metade do intervalo, e finalmente, de
posse da inclinagdo ¢4, calculamos a quarta inclinacdo, ¢,4, no fim do intervalo atual (x;_; +
h ou x;).

01 = 9g(Xi—1;Yi-1) (22)
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h h
0z =9g(xi—1 + 2 Vi1t 15 ) (23)
h h
@3 =9g(x;—1 + 5 Yi-1t+ <P2§ ) (24)
@y =91+ h; yi_1 + @3 h) (25)

Para o célculo da inclinacdo utilizada para encontrar o proximo ponto (¢), obtemos a
média ponderada das inclinages encontradas anteriormente, considerando ¢, e ¢, com peso
igual a 1 e ¢, e 3 com peso igual a 2.

2 2
(p=(P1+ fng‘ P31+ Py (26)

De posse da inclinacdo ¢, a ordenada do ponto a ser calculado é encontrada utilizando

a equacdo 19. Repetindo-se esta metodologia n vezes, encontram-se todos 0s pares ordenados

desejados atraves do método RK4.
2.3.1 Método RK4 para EDOs de 22 Ordem
Para resolver numericamente uma EDO de ordem superior, precisamos transforméa-la

em um sistema de EDOs de primeira ordem (FRANCO, 2006). Vejamos o caso da

transformacédo de uma EDO de segunda ordem, dada de forma genérica por:

d’y dy
W =g (x; y; E) (27)
Podemos definir uma variavel auxiliar z, onde:
dy
_ 28
2= (28)
2
dz _dy (29)
dx dx?
Com isso, obtivemos um sistema com duas EDOs de primeira ordem:
dy
—=z= g,(xy;2)
dx (30)
dz_ (.ldy>_ (5 y:2)
dx - g XY dx =9:\ X5y, Z

De posse do sistema, determinamos um intervalo de estudo [x,, x,,], um passo h e as
condicdes iniciais y(xg) = yo € z(x) = y, para implementarmos o método RK4 da seguinte

maneira;

h
Yi=Yimtg (91y + 202y + 203y + @4y) (31)



Onde:

h
Zi =21t g ((plz + 2(p22 + 2(p3z + (:042)

P1y = gy(xi—1i3’i—1izi—1)

01z = 9(Xi—1; Yi—1; Zi—1)

h h h
Q2y = Gy(Xic1 + 55 Yic1 T Q155 Zica + Q125 )

2 2 2

h h h
Y2, = gz (xi—1 + 5 Vi1 + P1y5 5 Zi-1 + P1z5 )

I~y

h h
Y3y = gy(xi—1 + 5 Yi-1+ <P2y§ ; Ziq t+ <Pzz§ )
h h h
Y37, = g (xi1 + 57 Yi-1 + P2y 5 Zi-1 + P2z )
Vay = gy(Xi—1 + h; Vi1 + @3y h; 2i4 + @3, h)

Yoz = Gz (Xicx +h; yica + @3y sz + @3, h)

19

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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3 OBJETIVOS

3.1 GERAL

Resolver numericamente a equacao estacionaria de Schrédinger com energia zero para

o confinamento unidimensional utilizando o método Runge-Kutta de 4% ordem.

3.2 ESPECIFICOS

e Calcular parametrizagdes por comprimento de arco para curvas planas a partir de suas
curvaturas;

e Calcular numericamente o confinamento eletrdnico extrinseco em curvas planas a
partir de suas curvaturas,

e Analisar as regides com maiores probabilidades de se encontrar elétrons ionizaveis nas

curvas estudadas.
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4 METODOLOGIA

Inicialmente automatizamos o método Runge-Kutta de 4% ordem para EDOs de
primeira e segunda ordem, vide secdo 2.3 e 2.3.1, utilizando um algoritmo desenvolvido no
programa Scilab verséo 6.1.0.

Em seguida, adaptamos o método para a EDO que modela o confinamento extrinseco
unidimensional, dado por Da Costa, para uma particula no modo zero de energia. Os
algoritmos utilizados para obtencédo dos resultados séo apresentados nos Apéndices.

De posse do RK4 automatizado, resolvemos numericamente duas EDOs, de primeira e
segunda ordem, e comparamos com suas soluc@es analiticas, visando a valida¢do do método.
Nesse estudo ainda foram utilizados outros métodos numéricos de passo Unico para
comparagdo com 0 RK4. Os parametros numéricos utilizados para a resolucéo das duas EDOs

estudadas séo explicitados na tabela 1.

Tabela 1 — Pardmetros numéricos utilizados para a validagcdo do RK4 automatizado.

Ordem da P
EDO Sinicial Sfinal ¥ (Sinicial) % h

12 -3,9 3,9 0,0004977 - 0.1

22 0 4 3 2 0.2

Fonte: Autoria propria.

Encontramos curvas com parametrizacdes por comprimento de arco e curvaturas ja
conhecidas na literatura. Utilizamos as curvaturas encontradas para a resolugdo numérica da
EDO estudada através do método de RKA4.

Encontramos ainda, curvaturas ndo descritas na literatura que permitem tanto a
resolucdo numérica da EDO em questdo, como o célculo da parametrizacdo por comprimento
de arco da curva a qual a curvatura pertence, equagdo 12.

Por fim, curvaturas que permitem a resolugdo numérica da EDO em estudo, mas que
impossibilitam a solugdo analitica da parametrizagcdo por comprimento de arco de suas curvas,
também foram estudadas.

Para algumas curvaturas estudadas implementamos um parametro «, 0 que permitiu a
andlise do efeito do aumento numeérico da funcdo curvatura, de um dado tipo de curva plana,

na funcdo de onda que rege a particula com energia zero confinada nesta curva.
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A andlise da densidade eletrbnica a partir das resolugbes numéricas foi feita de
maneira qualitativa.

Todos os graficos foram gerados utilizando o programa Origin 2018. Os parametros
numéricos utilizados para a implementacdo do método de RK4 em todos os casos estudados

estdo dados na tabela 2.

Tabela 2 — Parametros numéricos utilizados para cada curvatura estudada.

dlp(sinicial)

k(S) Sinicial Sfinal 'P(sinicial) h
ds
0 0 100 0 1 0,1
1
— 0 700 0 1 1
p
a
5 0,1 10000 0 1 5
‘ 0,1 2000 0 1 1
2/s ’
cos%s 0 120 0 1 0,1
sen%s 0 120 0 1 0,1
s* 0 10 0 1 0,01
In*(s) 0,1 50 0 1 0,1

Fonte: Autoria propria.
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5 RESULTADOS E DISCUSSAO

Admitimos E = 0 na equagéo estacionaria de Schrodinger, equacéo 13, e adotamos o
Hamiltoniano proposto por da Costa para o confinamento quantico unidimensional, equacao
16. Deste modo, obtemos a equacdo que modela o problema da particula no modo zero
confinada em uma curva plana:

d*¥P(s)  k(s)?
ds? 4
Solucionamos numericamente a equacdo 41 para algumas fungbes curvaturas,

utilizando o RKk4.

Y(s) (41)

5.1 VALIDACAO DO RK4

Visando o aprendizado e validagdo do RK4 escolhemos arbitrariamente duas EDOs
com solugdes analiticas conhecidas, sendo uma de primeira ordem e outra de segunda ordem,
dadas na tabela 3, e comparamos com suas respectivas solu¢des numeéricas calculadas por
alguns métodos de passo Unico além do RK4: método de Euler, método de Heun e o método

do ponto médio, figura 6.

Tabela 3 — EDOs estudadas para validacdo do método e suas respectivas solucdes analiticas.

EDO Solucdo Analitica
d _ 1
—y = xyz — xy y - x2
dx 1+e2
d?y dy -x
2— = -3 —-— = e 2
dx? 3 dx y =etzez

Fonte: Polyanin e Zaitsev (2003).

A EDO de primeira ordem estudada ¢ um exemplo de equacéo de Bernoulli, utilizada
no estudo de mecénica dos fluidos (FOX et al., 2018), ja a EDO de segunda ordem pode
modelar, por exemplo, um sistema massa-mola de oscilagcdo livre e com amortecimento
(NUSSENZVEIG, 2014).
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Figura 6 — Soluc@es analiticas e numéricas para as EDOs de primeira ordem (A) e de segunda
ordem (B).

—— Solugio analitica, ® e Método de Euler; » * Método de Heun
® o Método do ponto médio; ® e RK4

3,04

y(x)

Fonte: Autoria propria

Analisando os resultados expostos na figura 6, nota-se que o RK4 é o método
numérico, dentre os métodos de passo Unico utilizados, que fornece resultados mais proximos

das solucGes analiticas das EDOs de primeira e de segunda ordem.
5.2 CURVAS DESCRITAS NA LITERATURA

Nesta se¢do pretendemos resolver numericamente o nosso problema considerando as
curvas com parametrizagfes por comprimento de arco e curvatura ja descritas na literatura. As

curvas encontradas foram a reta e a circunferéncia.
5.2.1 Particula com energia zero confinada em uma reta
Parametrizando uma reta r contida no R?, y = ax + b, paralela ao vetor v =<

vy v, > que passa pelo ponto P(x, y,), figura 7, por comprimento de arco, tem-se:

a(s) = <x0 (42)

LS LSV )
————————— 'yo ———————————
\/ Ulz + Ulz 4/ v12 + v12
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Figura 7 — Reta paralela ao vetor v e passando pelo ponto P.

r

Fonte: Autoria prépria.

Para qualquer reta k(s) = 0 (DO CARMO, 2016), com isso a EDO que modela uma
particula com energia zero confinada nesta curva se torna:

d*¥(s)
=0 43
v (43)
A equacdo 43 é nomeada equacdo de Laplace unidimensional. Tal equacdo também

modela o problema da distribuicdo de potencial entre dois pontos e tem como solucdo

analitica uma reta (FONTANA, 2010).
Resolvemos a equacdo 43 utilizando o0 método Runge-Kutta de 42 ordem, figura 8.

Figura 8 — Resolugdo numeérica para uma particula com energia zero em uma reta.
¥(s)
100

80 4

60

Y(s)

40 4

204

- - - - - 1
0 20 40 60 80 100

Fonte: Autoria propria.
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Como o RK4 é implementado em um intervalo definido de s, a regido estudada para o
confinamento da particula € um segmento de reta.

A funcdo W¥(s) se comporta como uma reta, como previsto pela literatura
(FONTANA, 2010).

Como W(s) ndo atende a condicdo de contorno W(0) = 0e W(I) = 0, o resultado
indica que a particula, quando com energia zero, ndo se encontra mais confinada na reta.
Porém, o Hamiltoniano modelado por Da Costa (1981), utilizado na modelagem do problema
estudado, pressupde o confinamento quantico da particula.

Com isso, o resultado encontrado aponta que ndo é possivel confinar uma particula
quéantica com energia zero em uma molécula ou nanoestrutura com geometria semelhante a de
uma reta, ou seja, a ionizacdo nestas estruturas deve acontecer em uma energia ainda negativa

do sistema.
5.2.2 Particula com energia zero confinada em uma circunferéncia

Uma circunferéncia qualquer ¢, (y—yo) 2+ (x — x0) 2 = p?, tem centro em (xo,Yo),

e raio p. Parametrizando ¢ por comprimento de arco s, tem-se:
s .S
a(s) =(xg +p cos'[—) Yo +p sm;) (44)

Para toda circunferéncia de raio p, k(s) = % (DO CARMO, 2016). Assim, a EDO

gue modela o problema do confinamento extrinseco no modo zero em uma circunferéncia é
dada por:
d?¥(s) 1

752 = —4—p2‘1’(5) (45)

Para a obtencdo do grafico da W¥W(s) que resolve a EDO numericamente, foram
estudadas 5 circunferéncias com centro em (x,y,) € p = 2; 10; 30; 70 e 100, o que tornou
possivel a analise do comportamento de ¥ (s) com a variacao estudada do raio p, figura 9.

Analisando os graficos da figura 9, todas as fungdes de onda apresentaram um
comportamento senoidal, com aumento da frequéncia e amplitude de onda de acordo com o

aumento de p.
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Figura 9 — Circunferéncias com p = 2; 3; 4e 5(A) e as respectivas ¥(s) (B, C, D, Ee F) para
uma particula no modo zero confinada as circunferéncias de A.
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Fonte: Autoria prépria.

Como consequéncia da interpretacdo da funcdo de onda dada por Max Born

(NUSSENZVEIG, 2014), podemos analisar qualitativamente a densidade eletrénica pelo
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grafico da funcdo de onda. Dado que as areas dos picos da funcdo de onda em um dado p sdo
iguais, as regides com maiores densidades eletronicas, nas circunferéncias estudadas, tendem
a ser equidistantes.

Por representarem o caso de uma particula confinada com energia zero, os resultados
expostos podem modelar as regides com maiores tendéncias a sofrerem ionizagdo em

moléculas ou nanoestruturas com geometria semelhante a circunferéncia.
5.3 CURVAS A PARTIR DA CURVATURA

Nesta secdo discutiremos os resultados numéricos obtidos partindo das curvaturas que
possibilitaram tanto a solugcdo numerica da equacdo 41, quanto a resolucdo analitica das
integrais na equacao 12, o que permitiu que encontrdssemos as curvas a que as curvaturas

pertenciam.

’ . - S
5.3.1 Particula com energia zero confinada em uma curva com fSO k(s)ds = alns

. - S , -
Consideramos inicialmente fSOk(s) ds = alns, sendo @« um numero real positivo.

Assim a fungéo curvatura é dada por:
a
k(s) =~ (46)

De posse da curvatura, resolvemos as integrais da equacdo 12 para obter a

parametrizagdo por comprimento de arco da curva a qual a curvatura da equacao 46 pertence:

o(s) = (azs-l- 1 (asen(alns) + cos(alns)),
(47)

azs_}_ 1(sen(oz Ins) — acos(a lns)))

Visando entender as mudangas causadas por a na curva, variamos os valores deste
parametro inicialmente entre 0 e 1, a« = 0,05; 0,1; 0,5 e 0,8. As curvas encontradas sao dadas
na figura 10.

Os valores @ =0,05 e 0,1 resultam em curvas que se aproximam a retas. Com o
aumento do parametro ha também um aumento da inclinacdo da reta fazendo com que a curva

tenda a se tornar uma espiral, evidenciada na curva com a =0,8.



29

Figura 10 — Curvas com k(s) = % para valores de @ entre O e 1.

a= 0,05
a=0,1
a=0,5
a=0,8

Fonte: Autoria propria.

Considerando k(s) = % a equacdo que modela uma particula no modo zero

confinada nas curvas com este tipo curvatura se da por:
d*¥(s) a?
ds?2 ~  4s2

Resolvemos numericamente esta EDO utilizando o RK4 para as curvas da figura 10.

¥(s) (48)

Os graficos obtidos para W(s) sdo explicitados na figura 11.

Figura 11 — Gréficos de W(s) para k(s) = % com valores de a entre O e 1.
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= Y(s)paraa=0,5 ¥(s) paraz=0,8
6000 4 2250 4
2000
5000 +
1750 4
4000 A 1500 <
—_— ~~ 1250 4
2 3000+ 2
S > 10004
2000 4 750 4
500 4
1000 4
250 4
0 04
0 2000 4000 6000 8000 10000 1} 2000 4000 6000 8000 10000
S )

Fonte: Autoria prépria.

Os graficos da figura 11 mostram que para a = 0,05 e 0,1, as fun¢des assemelham-se a
uma reta. Estes resultados sdo esperados, como visto na se¢do 4.2.1, ja que a curva em que a
particula esta confinada nestes casos também aproximasse da reta. Ja para 0s casos em que
a= 05e0,8, as funcbes de onda apresentam uma tendéncia a tornarem-se funcGes
logaritmicas.

Contudo, em todos esses casos, como na sec¢do 4.2.1, as funcdes de onda ndo atendem
a condicdo de contorno, indicando que ndo é possivel confinar uma particula no estado zero
de energia nestas curvas.

Em seguida admitimos « = 1; 2; 3 e 4, e plotamos as curvas, utilizando a equagéo 47,

figura 12.

Figura 12 — Curvas com k(s) = % para valores de oo de 1 a 4.

1
2
3
4

(24
(24
(24
(24

Fonte: Autoria prépria
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Nestes casos, a curvas encontradas tendem a formacgdo de uma espiral, contudo, como
esperado, com o aumento de «, tem-se um aumento da curvatura, fazendo com que a curva
assuma a forma espiralada mais rapidamente.

Nas espirais em que a = 2; 3 e 4, a linha que atravessa o polo encontra a curva em
distancias que obedecem a uma progressao geométrica, 0 que indica que essas curvas sejam
exemplos de espirais logaritmicas (LOCKWOOD, 1961).

Resolvemos numericamente a equacdo 48 para as curvas da figura 12. Os gréficos da
funcdo de onda, figura 13, demonstram que para « = 1 ha um comportamento ainda
semelhante a uma funcdo logaritmica, entretanto para a« = 2; 3 e 4 apresenta-se um

comportamento senoidal.

Figura 13 — Graficos de W(s) para k(s) = % com valores de o de 1 a 4.
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Fonte: Autoria prépria
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Nas fungdes de onda senoidais, hd um aumento da amplitude e do comprimento de
onda com o aumento de s. Como, no caso em estudo, k(s) e s sd0 inversamente
proporcionais, 0s maiores valores de s séo dados nas regides de menores curvaturas, figura
14.

Figura 14 — Graficos de k(s) = % para os valores de a estudados.

40 -
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s

Fonte: Autoria Prépria

Com isso, os resultados indicam que os elétrons mais ionizaveis, em estruturas
guimicas com geometria de espiral logaritmica, devem se encontrar nas regides mais afastadas

do centro da espiral.

5.3.2 Particula com energia zero confinada em uma curva com fsso k(s)ds = av/s

Partindo de fsso k(s) ds = a+/s temos que:

k(s) = == (49)

Resolvendo as integrais da equagdo 12 com a curvatura da equagao 49, obtemos:

o(s) = <% (aVssen(avs) + cos(avs)),
(50)
%(sen(ax/s_) -« \/S_COS(a\/S—))>
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A figura 15 apresenta as curvas parametrizadas pela equagdo 50, considerando a =
0,05; 0,1; 0,5 e 0,8. Com 0 aumento de « as curvas tendem a formacao de uma espiral, sendo
esta forma assumida em « = 0,5 e 0,8. Como esperado, na curva com a = 0,8, nota-se uma
formacdo mais acelerada da espiral, dado que esta apresenta os maiores valores para k(s)
dentre os valores de « estudados.

As espirais encontradas apresentam voltas sucessivas espagadas igualmente, o que
indica que as curvas sdo exemplos de espirais de Arquimedes (LOCKWOOD, 1961).

Figura 15 — Curvas com k(s) = ZL\/E para valores de o entre 0 e 1

Fonte: Autoria propria.

A EDO que modela o problema do confinamento no modo zero para esta curvatura é

dada por:
2 2
4Hs) ;S’E) = —%w(s) (51)
Calculamos numericamente a resolugéo da equacdo 51, para os valores de &« menores
que 1 estudados, figura 16. Nas curvas com « = 0,05 e 0,1 as funcbes de onda nédo atendem a
condicdo de contorno, o que indica a impossibilidade do confinamento da particula. Porém,
para as curvas espirais, « = 0,5 e 0,8, as fun¢bGes de onda apresentam comportamentos

senoidais, com maiores frequéncias em a = 0,8.

Nota-se ainda, que as areas das funcdes de onda sdo maiores nos valores de s mais
elevados, o que indica que a particula tende a se encontrar nas regides com maiores

curvaturas, ou seja, nas regidoes mais afastadas dos polos das espirais.
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Figura 16 — Graficos de W(s) para k(s) = -~ com valores de o entre 0 ¢ 1.
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Fonte: Autoria prépria.

Estudamos ainda os casos em que a = 1; 2; 3 e 4. As curvas encontradas, figura 17,
também formam espirais de Arquimedes e, como esperado, com o aumento de a hd um
aumento nos valores da curvatura, fator que acelera a formacéo da espiral.

Nos casos em que a = 3 e 4, a curvatura assume valores muito maiores do que nos
casos a =1e 2, isto faz com que a = 3 e 4 se assemelhem a discos quando plotadas juntas as
curvas com a =1 e 2. Assim, para a melhor visualizacdo, ainda na figura 17 temos as curvas

encontradas plotadas separadamente.
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Figura 17 — Curvas com k(s) = z% para valores de oo de 1 a 4.
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Fonte: Autoria Propria.

As funcgdes ¥(s), obtidas numericamente para cada curva da figura 17, podem ser
visualizadas na figura 18. Os comportamentos senoidais apresentados pelas func@es de onda

concordam com os resultados obtidos anteriormente para valores de « menores que 1, dado
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que todas as curvas encontradas sdo espirais. Ha ainda o aumento da frequéncia de acordo

com o0 aumento de «.

Figura 18 — Graficos de W(s) para k(s) =
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Fonte: Autoria propria.
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Além disso, 0s picos com maiores areas estdo presentes nas regides com maiores

valores de s. A figura 19 apresenta os graficos da funcdo curvatura para cada a estudado.

Nestes, é possivel analisar que os valores mais elevados de s resultam nas menores curvaturas

das curvas. Com isso, 0s resultados indicam que estruturas quimicas com a geometria espiral

de Arquimedes tendem a sofrer ionizagdo nas regides mais afastadas do polo da espiral.
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Figura 19 — Graficos de k(s) = ZL\/E para os valores de o estudados.
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Fonte: Autoria propria.

5.4 CURVATURA DE CURVAS DESCONHECIDAS

Nesta secdo, discutiremos os resultados obtidos para o estudo da particula no modo

zero confinada em curvas que possuem curvaturas que impossibilitam a obtencdo das

solucdes analiticas das integrais presentes na equacédo 12.

As curvaturas estudadas foram: sen“(s) e cos®(s), para a = 1; 2; 3 e 4, In“(s)e s,

para a =1/2;1;3/2e 2.

Contudo, encontramos na literatura as curvas, calculadas numericamente, para 0s

casos em que a = 1 nas curvaturas sen®(s), cos®(s) e s%, figura 20 (PICADO, 2006).

Figura 20 — Curvas com curvaturas (A) sen (s), (B) cos (s) e (C) s, calculadas
numericamente.
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Fonte: Picado (2006).
5.4.1 Particula com energia zero confinada em uma curva com k(s) = cos®(s).

Considerando k(s) = cos*(s) na equacao 41, temos que:
d*¥(s)  cos**(s)

ds?2 4
A figura 21 apresenta os resultados numéricos obtidos para a equagéo 52, sendo a = 1;

Y(s) (52)

2; 3 e 4. As fungdes de onda apresentaram um comportamento senoidal, com diminuicdo da
frequéncia e aumento de amplitude de acordo com o aumento de a. Porém para um mesmo «,
ndo ha mudancas significativas na area dos picos com a variacdo de s, indicando, como no
caso do confinamento em circunferéncias (secdo 4.2.2), que as regides com maiores

probabilidades de encontrar a particula sdo equidistantes.

Figura 21 — Graficos de W(s) para k(s) = cos*(s).
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Fonte: Autoria prépria.

5.4.2 Particula com energia zero confinada em uma curva com k(s) = sen®(s).

Para curvas com k(s) = sen®(s), a EDO que modela o confinamento no modo zero
se torna:
d*¥(s) _senza(s)
ds? 4
Consideramos a = 1; 2; 3 e 4 para resolver a EDO utilizando o método RK4, figura

P(s) (53)

22. Os resultados obtidos para as W(s) encontradas demonstram um comportamento senoidal,
com diminuicdo da frequéncia e aumento da amplitude onda de acordo com o aumento de a.
A variagédo de s ndo causa mudancas significativos para os picos, em um dado «, o que indica

uma densidade eletrdnica distribuida igualmente em regides equidistantes na curva.

Figura 22 — Graficos de W(s) para k(s) = sen®(s).
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* Y(s) paraa=3 = Y(s)paraa=4
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Fonte: Autoria prépria.
5.4.3 Particula com energia zero confinada em uma curva com k(s) = s*.

Considerando uma curva plana com k(s) = s%, tem-se a seguinte equacdo de

Schrodinger no modo zero:
= —_w(s) (54)

. ~ 1 3 .
Calculamos numericamente a resolugdo da EDO com a = > 1; S € 2, figura 23. As

solugdes apresentaram aumento da frequéncia e diminuicdo da amplitude de onda com o
aumento de a. Para um mesmo valor de a, hd uma diminuigéo da area dos picos da fungéo de

onda com 0 aumento de s.

Figura 23 — Graficos de ¥(s) para k(s) = s*.
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= Y(s) para a=2
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Fonte: Autoria prépria.

A figura 24 apresenta os graficos para as funcdes curvaturas estudadas. As regido com
menores valores de s fornecem os menores valores para k(s). Assim, os resultados para ¥ (s)
evidenciam que os elétrons mais ionizaveis tendem a se encontrar nas regiées com menores

curvaturas nas curvas estudadas.

Figura 24 — Graficos de k(s) = s* para os valores de a estudados.
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Fonte: Autoria prépria.

5.4.4 Particula com energia zero confinada em uma curva com k(s) = In“%(s).

A EDO que modela o confinamento extrinseco de uma particula no modo zero em

curvas com k(s) = In%(s) se apresenta como:



As resolugdes numeéricas da equacdo 54, considerando

d*¥(s)

ds? 4

_ In%%(s)

Y(s)

a =

1

R

3
-e 2, sao
2
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(55)

~

apresentadas na figura 25. As funcGes de onda apresentaram comportamento semelhante aos

resultados obtidos na secdo 4.4.3, com comportamentos senoidais, além do aumento da

frequéncia e diminui¢do da amplitude de onda com o aumento dos valores de s.

Figura 25 — Graficos de ¥ (s) para k(s) = [n*(s).
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Fonte: Autoria prépria.

A érea dos picos nas ¥ (s) diminui com o aumento de s. Analisando os graficos das

funcOes curvaturas estudadas, figura 26, nota-se que os menores valores de s resultam nos

menores valores de curvatura.

Assim, moléculas e nanoestruturas com k(s) = In*(s) tendem a ter seus elétrons

mais facilmente ionizaveis nas regies com menores curvaturas.



Figura 26 — Graficos de k(s) = [n%*(s) para os valores de a estudados.
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Fonte: Autoria propria.
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6 CONCLUSAO

Foi possivel resolver numericamente equacdes de Schrddinger no modo zero, que
modelam o confinamento de particulas no limite de ligacdo em regides unidimensionais,
considerando a abordagem extrinseca dada por Da Costa.

As andlises qualitativas das areas dos picos das fungdes de onda permitiram identificar
as regides com maiores tendéncias de sofrerem ionizacdo. Assim, o estudo de particulas
confinadas em regifes unidimensionais pode fornecer uma aproximacdo das regibes mais
facilmente ionizaveis nas moléculas e nanoestruturas com geometrias semelhantes as curvas
estudadas. Contudo, serdo necessarios futuros calculos computacionais para confirmacdo da
hipbtese.

Estruturas com geometrias proximas a uma reta, possivelmente tem seus elétrons
ionizados com energias inferiores a 0. As estruturas circulares devem sofrer ionizagdo em
regifes equidistantes. Por outro lado, moléculas com geometrias semelhantes as espirais de
Arquimedes e Logaritmica, tendem a ter os elétrons mais facilmente ionizaveis em regides
mais afastadas do polo da espiral.

Conseguimos ainda, partindo de algumas func¢des curvaturas, prever as regides com
maiores tendéncias de ionizagdo em curvas ainda ndo definidas analiticamente.

Como perspectivas do trabalho, esperamos encontrar outras curvas com
parametrizacdes por comprimento de arco e curvaturas conhecidas, que possibilitem a solucéo
numérica da EDO que modela o confinamento extrinseco unidimensional no modo zero.
Além disso, pretendemos calcular numericamente as integrais que fornecem as
parametrizagdes das curvas que resolvemos numericamente o problema do confinamento a

partir das suas curvaturas.
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APENDICE A - ALGORITMO UTILIZADO PARA A COMPARACAO DO RK4
COM UMA EDO DE PRIMEIRA ORDEM E OUTROS METODOS NUMERICOS.

Alguns comentéarios, que auxiliam a compreensdo do algoritmo abaixo, estdo

destacados em negrito.

function y = solucaocedoprimeiraordem (x)
y = [1+exp(x"2/2)]"(-1)
endfunction //Definimos a solugdo analitica da EDO de primeira ordem estudada.

function z=qg(x, y)
Z = X*y"2 - X*y,
endfunction //Definimos a EDO de primeira ordem que sera solucionada numericamente,

d
ondez = £,
dx

function [x, y] =euler (a, b, h, y0).
x=ah:b
n = length(x)
y(1) = y0
fori=1:n-1
y(i+1) = y(i) + g(x(i),y(i))*h;
end

endfunction

function [x, y]=heun(a, b, h, y0)
x=ah:b
n = length(x)
y(1) = y0
fori=1:n-1
k1 = a(x(i),y(i)
k2 = g(x(i)+h, y(i) + k1*h)
k = 0.5*(k1+k2)
y(i+1) = y(i) + k*h;



48

end

endfunction

function [x, y]=PontoMedio(a, b, h, y0)

x =ah:b

n = length(x)

y(1) =y0

fori=1.n-1
k1 =g(x(i).y(1))
k2 = g(x(i)+h/2, y(i) + k1*h/2)
y(i+1) = y(i) + k2*h;

end

endfunction

function [x, y]=RK4(a, b, h, y0)
x=ah:b
n = length(x)
y(1) = Y0
fori=1:n-1
k1 = a(x(i),y(i)
k2 = g(x(i)+h/2, y(i) + k1*h/2)
k3 = g(x(i)+h/2, y(i)+k2*h/2)
k4 = g(x(i)+h, y(i)+k3*h)
k = (k1+2*k2+2*k3+k4)/6
y(i+1) = y(i) + k*h;
end
endfunction //Programamos as rotinas dos métodos numéricos utilizados para a

resolucdo da EDO de primeira ordem estudada: Euler, Heun, ponto médio e RK4,

[x,ye] = euler(-3.9,3.9,.1, 0.0004977)
[x,yh] = heun(-3.9,3.9,.1, 0.0004977)
[X,ypm] = PontoMedio(-3.9,3.9,.1, 0.0004977)
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[x,yrk4] = RK4(-3.9,3.9,.1, 0.0004977) //[Fornecemos a0 programa 0S parametros
numeéricos utilizados para o célculo da solugdo numérica da EDO de primeira ordem

estudada.

plot(x',ye,'0’)

plot(x',yh,’x)

plot(x',ypm,'+')

plot(x',yrk4,""") //[Damos o comando para o plot dos graficos numericamente obtidos.

a=-3.9:01:3.9

y = solucaoedoprimeiraordem (a)

plot (a,y,-") //Damos o comando para o plot da solucédo analitica e os parametros para a

extensao do gréfico.
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APENDICE B - ALGORITMO UTILIZADO PARA A COMPARACAO DO RK4
COM UMA EDO DE SEGUNDA ORDEM E OUTROS METODOS NUMERICOS.

function y = solucaoedosegundaordem(x)

y = exp(X)+2*exp(x/2)

endfunction //Definimos a solucdo analitica da EDO de primeira ordem estudada.

function t=gy(X, v, 2)
t=7z
endfunction //Definimos, como uma fungéo, uma das equag0Oes do sistema de EDOs de

primeira ordem, obtido pela EDO de segunda ordem, onde z = Z—i’.

function s=gz(x, vy, 2)
s = (3*z-y)/2;
endfunction //Definimos, como uma funcéo, uma das equacg6es do sistema de EDOs de

primeira ordem, obtido pela EDO de segunda ordem, onde s = %.

function [x, y, z]=eulersistema(a, b, h, y0, z0)

x=ah:b

n = length(x)

y(1) =y0

z(1) =20

fori=1nn-1
ks = gy (x(i),y(i),z(i))
k1v = gz(x(i),y(i).z(i))
y(i+1) = y(i) + k1s*h;
z(i+1) = z(i) + klv*h;

end

endfunction

function [x, y, z]=heunSistema(a, b, h, y0, z0)
x =ah:b

n = length(x)



y(1) = y0

z(1) =20

fori=1nn-1
k1s = gy(x(i),y(i),z(1))
k1v = gz(x(i),y(i).z(i))
k2s = gy(x(i)+h, y(i) + k1s*h, z(i) + klv*h)
k2v = gz(x(i)+h, y(i) + k1s*h, z(i) + klv*h)
y(i+1) = y(i) + (k1s+k2s)*h/2;
z(i+1) = z(i) + (k1v+k2v)*h/2;

end

endfunction

function [x, y, z]=pontoMedioSistema(a, b, h, y0, z0)

x=ah:b

n = length(x)

y(1) =y0

z(1) =20

fori=1:n-1
k1s = gy(x(i),y(i),z(i))
kiv = gz(x(i),y(i).z(i))
k2s = gy(x(i)+h/2, y(i) + k1s*h/2, z(i) + k1v*h/2)
k2v = gz(x(i)+h/2, y(i) + k1s*h/2, z(i) + k1v*h/2)
y(i+1) = y(i) + k2s*h;
z(i+1) = z(i) + k2v*h;

end

endfunction

function [x, y, z]=rk4Sistema(a, b, h, y0, z0)
x=ah:b
n = length(x)
y(1) = y0
z(1) =20
fori=1:nn-1
k1s = gy(x(i),y(i),z(1))
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k1v = gz(x(i),y(i).z(i))
k2s = gy(x(i)+h/2, y(i) + k1s*h/2, z(i) + k1v*h/2)
k2v = gz(x(i)+h/2, y(i) + k1s*h/2, z(i) + klv*h/2)
k3s = gy(x(i)+h/2, y(i) + k2s*h/2, z(i) + k2v*h/2)
k3v = gz(x(i)+h/2, y(i) + k2s*h/2, z(i) + k2v*h/2)
kds = gy(x(i)+h, y(i) + k1s*h, z(i) + k3v*h)
kdv = gz(x(i)+h, y(i) + k1s*h, z(i) + k3v*h)
y(i+1) = y(i) + (k1s+2*k2s+2*k3s+k4s)*h/6;
z(i+1) = z(i) + (k1lv+2*k2v+2*k3v+k4v)*h/6;
end
endfunction  //Programamos as rotinas dos métodos numéricos utilizados para a

resolucdo da EDO de segunda ordem estudada: Euler, Heun, ponto médio e RK4.

[x,ye,ze] = eulersistema(0,4,0.2,3,2)
[x,yh,zh] = heunSistema(0,4,0.2,3,2)
[X,ypm,zpm] = pontoMedioSistema(0,4,0.2,3,2)

[x,yrk4,zrk4] = rk4Sistema(0,4,0.2,3,2) //[Fornecemos ao programa 0S parametros
numéricos utilizados para o calculo da solu¢do numérica da EDO de primeira ordem

estudada.

plot(x,ye,+)

plot(x,yh,’x’)

plot(x,ypm,‘o’)

plot(x,yrk4,"~") //Damos o comando para o plot dos graficos numericamente obtidos.

a=0:.02:4

y = solucaoedosegundaordem (a)

plot (a,y,-") //Damos o comando para o plot da solucdo analitica e os parametros para a

extensdo do grafico.
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APENDICE C - ALGORITMO UTILIZADO PARA A RESOLUCAO DA EQUACAO
DE SCHRODINGER NO MODO ZERO UTILIZANDO O RK4.

function w=gy(x, Y, z)
W=7z
endfunction //Definimos, como uma funcédo, uma das equacdes do sistema de EDOs de
dy

primeira ordem, obtido pela EDO de segunda ordem, onde z = —

function t=gz(x, y, 2)
t = - (k(s))"2/4*y
endfunction //Definimos, como uma funcédo, uma das equagdes do sistema de EDOs de

primeira ordem, obtido pela EDO de segunda ordem, onde t = %. Devemos substituir

k(s) pela funcédo curvatura desejada.

function [x, y, z]=rk4daCostamodozero(a, b, h, y0, z0)

x =ah:b

n = length (x)

y(1) =y0

z(1) =20

fori=1.n-1
k1y = gy(x(i),y(i),z(i))
k1z = gz(x(i),y(i),z(1))
k2y = gy (x(i) + h/2, y(i) + kly*h/2, z(i) + k1z*h/2)
k2z = gz (x(i) + h/2, y(i) + k1ly*h/2, z(i) + k1z*h/2)
k3y = gy (x(i) + h/2, y(i) + k2y*h/2, z(i) + k2z*h/2)
k3z = gz (x(i) + h/2, y(i) + k2y*h/2, z(i) + k2z*h/2)
kdy = gy (x(i) + h, y(i) + k3y*h, z(i) + k3z*h)
kdz = gz (x(i) + h, y(i) + k3y*h, z(i) + k3z*h)
ky = (k1y + 2*k2y + 2*k3y + kdy)/6
kz = (k1z + 2*k2z + 2*k3z + k4z)/6
y(i+1) = y(i) +ky*h
z(i+1) = z(i) +kz*h

end
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endfunction //Programamos as rotinas do RK4 utilizado para a resolu¢cdo da EDO de

segunda ordem estudada.

A% (Sinicial)

e ) //Fornecemos ao

[x,y,z] = rk4daCostamodozero (Siniciar: Srinatr M ¥ (Siniciar)s

programa os parametros numéricos utilizados para o célculo da solucdo numérica da
EDO de primeira ordem estudada. Devemos substituir os pardmetros numéricos,
expressos aqui de maneira geral, pelos valores utilizados no estudo de uma determinada

curvatura.

plot(x',y,'0") //Damos o comando para o plot dos graficos numericamente obtidos.



