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RESUMO 

 

A previsão do consumo de energia elétrica desempenha um papel importante no 

gerenciamento eficaz dos recursos energéticos. Este estudo investiga métodos de 

previsão de consumo de energia elétrica aplicados no contexto brasileiro. Quatro 

técnicas de previsão amplamente reconhecidas foram exploradas: Suavização 

Exponencial, ARIMA (do inglês, Autoregressive Integrated Moving Average), 

Máquinas de vetores de suporte (MVS) e Redes Neurais Artificiais (RNA). A análise 

teve início com a decomposição da série temporal, permitindo a identificação de 

tendências, sazonalidades e variações aleatórias nos dados. A Suavização 

Exponencial de Holt-Winters e o modelo ARIMA foram utilizados para modelar os 

aspectos temporais subjacentes. A técnica das Máquinas de Vetores de Suporte 

(MVS) foi aprimorada por meio da otimização de parâmetros, resultando em previsões 

de alta precisão e confiabilidade. Embora exigisse esforços computacionais 

significativos, o MVS demonstrou notável capacidade na captura de relações 

complexas. As RNA foram investigadas e emergiram como a abordagem mais eficaz, 

fornecendo previsões excepcionalmente precisas e robustas. O método se destacou 

na captura de padrões complexos e sequenciais, sendo a escolha preferencial para 

prever o consumo de energia elétrica no Brasil. No entanto, a escolha final do modelo 

deve considerar não apenas métricas de avaliação, como MSE (do inglês, Mean 

Squared Error), MAE (do inglês, Mean Absolute Error), e RMSE (do inglês, Root Mean-

Squared Error), mas também a adaptação aos dados específicos e as demandas 

computacionais. 

 

Palavras-chave: consumo de energia elétrica; séries temporais; arima; suavização 

exponencial; inteligência artificial. 

 

 

 

 

  



 

 

ABSTRACT 

 

The prediction of electricity consumption plays a crucial role in the effective 

management of energy resources. This study investigates electricity consumption 

forecasting methods applied in the Brazilian context. Four widely recognized 

forecasting techniques were explored: Exponential Smoothing, ARIMA 

(Autoregressive Integrated Moving Average), Support Vector Machines (SVM), and 

Artificial Neural Networks (ANN). The analysis began with the decomposition of the 

time series, allowing for the identification of trends, seasonality, and random variations 

in the data. The Holt-Winters Exponential Smoothing and the ARIMA model were used 

to model the underlying temporal aspects. The Support Vector Machines (SVM) 

technique was enhanced through parameter optimization, resulting in highly accurate 

and reliable forecasts. Although it required significant computational efforts, SVM 

demonstrated remarkable capability in capturing complex relationships. ANN was 

investigated and emerged as the most effective approach, providing exceptionally 

precise and robust predictions. This method stood out in capturing complex and 

sequential patterns, making it the preferred choice for forecasting electricity 

consumption in Brazil. However, the final choice of the model should consider not only 

evaluation metrics such as MSE (Mean Squared Error), MAE (Mean Absolute Error), 

and RMSE (Root Mean-Squared Error) but also adaptation to specific data and 

computational demands. 

 

Keywords: electrical energy consumption; time series; arima; exponential smoothing; 

artificial intelligence. 
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1 INTRODUÇÃO 

 

A preocupação com as mudanças climáticas se intensifica a cada dia no 

cenário global, e a busca por soluções que levem à neutralidade climática tem se 

tornado uma prioridade para muitos países. No ano de 2023, o Governo Federal do 

Brasil publicou diretrizes abrangentes para uma estratégia nacional voltada à 

neutralidade climática. A principal proposta é adotar medidas abrangentes para 

reduzir as emissões de gases de efeito estufa e transformar a matriz energética 

(Brasil, 2020). Uma das áreas-chave contempladas nessas diretrizes é o setor de 

energia. Reconhecendo sua importância como um dos principais contribuintes para 

as emissões de gases de efeito estufa, uma série de medidas específicas foi proposta 

visando a transição para uma matriz energética mais sustentável e renovável (Brasil, 

2020). 

A matriz elétrica brasileira desempenha um papel importante na economia do 

país e abrange a geração, transmissão e distribuição de energia elétrica. O Brasil tem 

um enorme potencial de geração de energia renovável, principalmente eólica e solar, 

e tem feito avanços significativos nessa área. Em janeiro de 2022, a capacidade 

instalada de energia eólica ultrapassou 20 GW (Machado, 2022). Dessa forma, o país 

ocupa a sétima posição em capacidade de energia eólica instalada. 

Apesar dos avanços na geração de energia renovável, o setor de energia 

precisa de melhoria contínua, aprimorando a gestão de seus recursos. Uma das 

estratégias de gestão de recursos é a adoção de práticas de eficiência energética, que 

envolvem a implementação de medidas para reduzir o consumo de energia sem 

comprometer a qualidade da entrega. O padrão ISO (do inglês, International 

Organization for Standardization) 50001 estabelece as melhores práticas para gestão 

e eficiência energética e incentiva as organizações a desenvolver políticas e 

processos para o uso mais eficiente de energia (ISO, 2018). Uma das maneiras de 

atingir esse objetivo é utilizando métodos que podem auxiliar na previsão de consumo. 

A previsão do consumo de energia elétrica é uma ferramenta importante para 

controlar a demanda e o consumo de eletricidade. Ela permite antecipar a evolução 

do consumo de energia e evitar o desperdício (Klyuev et al., 2022). Isso é fundamental 

para o gerenciamento eficaz dos recursos energéticos e o planejamento de um 

fornecimento adequado. A projeção pode ser utilizada para evitar interrupções no 
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fornecimento de energia elétrica, otimizar a produção e reduzir custos operacionais 

(Carvalho, 2019). 

No passado, técnicas como regressão linear, média móvel e ARIMA foram 

utilizadas para prever o consumo de energia. Essas técnicas funcionavam bem em 

situações simples e estáveis, nas quais os padrões de consumo não mudavam com o 

tempo. No entanto, à medida que os dados se tornaram mais complexos e novos 

padrões surgiram, essas técnicas começaram a apresentar limitações (Mohamed; 

Bodger, 2005). 

As técnicas de inteligência artificial (IA) destacam-se por sua habilidade em 

lidar com a complexidade dos dados de consumo energético. Elas conseguem 

aprender e se adaptar aos padrões dos dados históricos, permitindo previsões mais 

precisas. A IA e o ML (do inglês, Machine Learning) têm o potencial de revolucionar a 

engenharia elétrica, trazendo inovações e melhorando a eficácia em diversas 

aplicações (Ahmad et al., 2014).  

Neste Trabalho de Conclusão de Curso (TCC), utilizaremos dados históricos 

do consumo de energia elétrica no Brasil para modelar e prever seu comportamento 

futuro. O objetivo principal deste estudo é explorar uma variedade de abordagens, 

utilizando tanto técnicas tradicionais de previsão (regressão linear e ARIMA) quanto 

técnicas avançadas de IA, como RNA e MVS. 

Para entender melhor o comportamento do consumo de energia elétrica ao 

longo do tempo, utilizaremos a regressão linear inicialmente. Esse método nos 

permitirá identificar tendências e padrões lineares nos dados históricos. O ARIMA será 

empregado para modelar séries temporais estacionárias, permitindo-nos capturar a 

conexão entre os registros históricos e o comportamento atual do consumo de energia 

elétrica. Essa técnica é especialmente útil para lidar com padrões sazonais e ciclos 

que podem ter um impacto significativo no consumo de energia elétrica (Hyndman; 

Athanasopoulos, 2021). 

Utilizaremos também as técnicas RNA e MVS, que são métodos mais 

avançados. A RNA, inspirada no funcionamento do cérebro humano, possue várias 

camadas de neurônios interconectados, permitindo a identificação de padrões não 

triviais nos dados e a previsão de comportamentos futuros. As MVS buscam encontrar 

um hiperplano ótimo para separar diferentes classes de dados, proporcionando 

previsões mais precisas (Haykin, 1998). 
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Inicialmente, cada uma dessas técnicas será implementada e treinada 

utilizando uma fração dos dados para teste. Durante o processo, ajustaremos os 

hiperparâmetros e otimizaremos o desempenho dos modelos para que possam lidar 

adequadamente com os dados reais de consumo de energia elétrica no Brasil. Isso 

inclui a seleção adequada de parâmetros, como neurônios em redes neurais, e 

parâmetros de regularização em modelos de Máquinas de Vetores de Suporte (Du et 

al., 2018). 

Depois, avaliaremos os resultados usando as métricas de desempenho de 

MAE, RMSE e coeficiente de determinação (R²). Dessa maneira, iremos analisar o 

desempenho das técnicas de RNA e MVS em relação à abordagem padrão e verificar 

se elas trazem melhorias significativas na precisão das previsões do consumo 

energético. Avaliaremos a precisão, a habilidade em capturar padrões complexos nos 

dados e a eficiência computacional de cada técnica. 

Ao concluir este TCC, pretende-se realizar uma análise comparativa 

abrangente entre as técnicas de RNA, MVS, ARIMA e suavização exponencial, 

aplicadas à previsão de consumo de energia elétrica no cenário brasileiro. O processo 

auxiliará na compreensão das vantagens e limitações de cada técnica, oferecendo 

perspectivas valiosas para aperfeiçoar as práticas de previsão e colaborar com a 

eficácia e sustentabilidade do setor elétrico. 

 

1.1 MOTIVAÇÃO 

 

A análise comparativa de métodos de previsão para o consumo de energia 

elétrica oferece informações importantes para as empresas de energia no Brasil, 

permitindo que tomem decisões fundamentadas sobre a adoção de tecnologias 

avançadas. Ao considerar a capacidade de adaptação dessas técnicas às mudanças 

contínuas no setor, como variações na demanda, expansão das fontes renováveis de 

energia e mudanças climáticas, é possível obter projeções mais precisas e tomar 

decisões mais eficientes. 

A utilização de técnicas avançadas de IA na previsão de consumo de energia 

elétrica no Brasil traz benefícios significativos, tanto em termos de precisão quanto de 

eficiência operacional. À medida que o setor energético continua evoluindo, é 

fundamental explorar e adotar abordagens inovadoras para enfrentar os desafios 
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futuros e garantir um fornecimento confiável e sustentável de energia elétrica. Neste 

contexto, este estudo realiza previsões de carga para a série histórica de consumo de 

energia no Brasil, adotando abordagens estatísticas, como o ARIMA, e técnicas de 

inteligência computacional, como o MVS, de maneira separada. 

 

1.2 OBJETIVOS 

 

1.2.1 Objetivo Geral   

 

O objetivo principal deste trabalho é analisar e comparar técnicas de IA com 

métodos tradicionais no âmbito da previsão de consumo de energia elétrica no Brasil, 

a fim de determinar a mais adequada ao cenário nacional. 

 

1.2.2 Objetivos Específicos 

 

● Comparar as técnicas de RNA e MVS com abordagens tradicionais na previsão 

do consumo de energia elétrica no Brasil. 

● Comparar a acurácia das técnicas de IA com a abordagem padrão, utilizando 

as métricas de avaliação, como Mean Absolute Error (MAE). 

● Analisar a capacidade das técnicas de IA em capturar padrões complexos e 

sutis nos dados de consumo de energia elétrica, permitindo previsões mais 

precisas e confiáveis. 

● Fornecer informações relevantes que possam contribuir significativamente para 

o aprimoramento das práticas de previsão de energia elétrica, além de 

colaborar para aumentar a eficiência e promover a sustentabilidade do setor 

elétrico. 

 

1.3 ESTRUTURA DO TRABALHO 
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O presente trabalho está dividido em seis capítulos. No primeiro capítulo, 

apresentamos a contextualização, os motivos e os objetivos do estudo sobre a 

previsão do consumo de energia elétrica no Brasil, destacando a importância do tema 

e a estrutura do trabalho. No segundo capítulo, realizamos uma análise sobre o 

consumo e a demanda de energia elétrica no Brasil. No terceiro capítulo, oferecemos 

uma fundamentação teórica abrangente, apresentando o embasamento necessário 

para a aplicação de técnicas de previsão energética globais. No quarto capítulo, 

detalhamos a metodologia, incluindo os procedimentos de coleta e análise de dados. 

No quinto capítulo, apresentamos o projeto detalhado das técnicas aplicadas em 

previsões energéticas, com ênfase nos modelos, hiperparâmetros ajustados, métricas 

de desempenho e outras considerações relativas à modelagem. No sexto e último 

capítulo, concluímos o trabalho apresentando uma síntese geral dos resultados 

obtidos ao longo do estudo.
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2 CENÁRIO DE CONSUMO E DEMANDA DE ENERGIA ELÉTRICA NO 

BRASIL 

 

2.1. COMPREENDENDO O CONSUMO E A DEMANDA NO SISTEMA 

ELÉTRICO DE POTÊNCIA NO BRASIL 

 

A rede elétrica moderna depende do Sistema Elétrico de Potência (SEP) 

para garantir a transmissão, distribuição e geração eficientes de energia elétrica. 

Uma das características essenciais do SEP atual é o seu funcionamento trifásico 

(Weedy, 2012). 

Ao longo da história, o desenvolvimento do SEP foi impulsionado por 

avanços tecnológicos e pela crescente demanda por eletricidade. No final do 

século XIX, a eletricidade começou a ser gerada em larga escala por meio de 

usinas termoelétricas e hidrelétricas. A distribuição inicial da eletricidade era 

limitada, ocorrendo principalmente em áreas urbanas. No entanto, com o tempo, 

a demanda por eletricidade aumentou, o que exigiu melhorias nas redes de 

transmissão e distribuição (Weedy, 2012). 

O consumo e a demanda de energia elétrica são conceitos fundamentais 

no SEP, com implicações diretas no fornecimento e no planejamento energético. 

Compreender a diferença entre esses dois termos é essencial para analisar o 

uso de energia elétrica e suas tendências. Embora complementares, esses 

conceitos apresentam diferenças (Oliveira; Silveira; Braga, 2000). 

No contexto do SEP, tanto o consumo quanto a demanda de energia 

elétrica são considerados para garantir a estabilidade e a confiabilidade do 

sistema. Os operadores precisam monitorar e prever a demanda, levando em 

conta os diferentes perfis de consumo ao longo do dia e do ano, a fim de planejar 

e operar o sistema de forma eficiente. A demanda pode variar ao longo do tempo 

devido a fatores sazonais, mudanças climáticas, atividades econômicas e 

eventos imprevisíveis (Weedy, 2012). 

De acordo com Santos (2004), as mudanças significativas no SEP, devido 

à inserção crescente da geração distribuída (GD), têm implicações diretas no 
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consumo de energia elétrica. Essas transformações não apenas aumentam a 

complexidade do SEP, mas também podem influenciar os padrões de consumo 

e demanda de energia elétrica. 

Em relação ao consumo de energia elétrica no Brasil, dados da Empresa 

de Pesquisa Energética (EPE, 2023), ilustrados na Figura 1, mostram uma 

tendência de aumento ao longo dos anos. No entanto, é importante observar que 

em períodos, como os anos de 2014 a 2016, e entre 2019 e 2020 houve redução 

no consumo. Entre 2014 e 2016, a redução do Produto Interno Bruto (PIB) pode 

ter impactado negativamente o consumo de energia elétrica (Gonçalves, 2004). 

No entanto, a partir de 2017, com a retomada do crescimento econômico, o 

consumo voltou a aumentar. 

 

Figura 1 - Consumo de energia elétrica no Brasil (TWh) entre 2012 e 2021 

 

Fonte: elaborada pela própria autora 

 

Esses exemplos destacam a dinamicidade do consumo de energia 

elétrica, que é influenciado por fatores econômicos, sociais e ambientais 

(Oliveira; Silveira; Braga, 2000). A introdução da geração distribuída, como a 

energia solar fotovoltaica, oferece uma alternativa mais sustentável e localizada 

para suprir parte das demandas de energia, contribuindo para a diversificação 

da matriz energética e para a redução das emissões de gases de efeito estufa 

(Gonçalves, 2004). 

 

 

2.2 CONSUMO DE ENERGIA ELÉTRICA NO BRASIL POR SETOR 
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O consumo de energia elétrica no Brasil pode ser dividido em três classes 

de consumidores: residencial, comercial e industrial. Diversos estudos foram 

conduzidos para analisar a demanda e o consumo de energia elétrica em cada 

uma dessas classes, comparando os padrões de consumo e demanda em 

diferentes países (Hansen, 2000). 

No contexto brasileiro do consumo residencial, o crescimento econômico 

está intimamente relacionado ao uso de energia elétrica. Esse crescimento tem 

sido impulsionado pelo avanço tecnológico e pela redução dos custos de 

eletrodomésticos, o que tem levado a melhorias na qualidade de vida e no 

conforto das populações. No entanto, é importante ressaltar que o aumento do 

consumo de energia elétrica não tem acompanhado de forma adequada o 

crescimento da capacidade de geração e distribuição do país (Ferreira; Borelli, 

2015). 

O consumo residencial de energia elétrica refere-se à utilização de 

eletricidade em residências e suas áreas adjacentes. Isso engloba o 

funcionamento de eletrodomésticos e outros dispositivos elétricos relacionados 

ao uso doméstico (Hansen, 2000). Segundo a pesquisa mencionada por Hobby 

e Tucci (2011), o consumo de eletricidade em residências é grandemente 

impactado pelo uso de sistemas de aquecimento e resfriamento. Em regiões com 

climas mais quentes e úmidos, o uso de ar-condicionado é mais intenso, levando 

a um aumento no consumo de eletricidade. 

Segundo Schmidt e Lima (2004), diferentemente da demanda residencial, 

que pode ser interpretada como um problema de maximização de utilidade 

sujeita a uma restrição orçamentária, a demanda comercial e industrial é 

impulsionada pela necessidade de operar aparelhos elétricos e máquinas 

específicas para a produção de bens. O consumo industrial de energia elétrica 

pode ser descrito como um problema de minimização de custo, sujeito a um certo 

nível de produção. 

A demanda de energia elétrica no âmbito industrial está diretamente 

ligada à produção e às operações das indústrias, estando relacionada à Quarta 

Revolução Industrial. O conceito se refere à atual transformação tecnológica em 

larga escala, caracterizada pela convergência de avanços em áreas como 
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inteligência artificial, automação e outras tecnologias. Essa transformação tem 

implicações no consumo de energia, uma vez que está ocorrendo a automação 

de processos e a adoção de tecnologias capazes de aumentar a eficiência 

energética e diminuir o consumo de energia elétrica (Dias et al., 2023). As 

inovações estão relacionadas à resolução do problema de minimização de 

custos, no qual as empresas buscam utilizar a energia elétrica de forma eficiente 

para produzir (Schmidt; Lima, 2004). 

O consumo de energia no setor comercial abrange uma variedade de 

atividades e serviços. Esses setores dependem de energia elétrica para manter 

seus sistemas e equipamentos em funcionamento, desde iluminação e 

climatização até equipamentos específicos para cada tipo de negócio. O 

consumo de energia varia de acordo com o tamanho dos equipamentos, o tempo 

de operação diária e a eficiência energética dos estabelecimentos (Ferreira; 

Borelli, 2015). 

A citação de Carvalho et al. (2010),  é relevante para entender a alta 

demanda de energia no setor comercial, especialmente em relação ao uso de 

sistemas de ar condicionado e iluminação. No Brasil, os sistemas de ar 

condicionado representam cerca de 70% (Carvalho; La Rovere; Gonçalves, 

2010)do consumo de energia em edifícios comerciais, devido à necessidade de 

manter ambientes confortáveis para as atividades comerciais. Além disso, os 

sistemas de iluminação também desempenham um papel significativo, sendo 

responsáveis por até 86% (Carvalho; La Rovere; Gonçalves, 2010) do consumo 

total de energia em locais como bancos e escritórios. Essa alta demanda 

evidencia a importância de adotar estratégias de eficiência energética e 

tecnologias mais sustentáveis para minimizar o impacto ambiental e os custos 

com energia no setor comercial. 

A Figura 2 (EPE, [202-?]) ilustra o consumo de energia elétrica por setor 

entre 2010 e 2022. Observa-se que o setor industrial é o maior consumidor de 

energia elétrica; no entanto, quando analisado em termos percentuais, há uma 

tendência de diminuição dessa participação. Em 2004, o setor industrial 

representava 47,1% do consumo total de energia elétrica, enquanto, no período 

de 2010 a 2022, sua participação mostrou uma redução. Em contraste, o setor 
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residencial apresentou o maior crescimento, com um aumento de 

aproximadamente 7% entre 2004 e o período de 2010 a 2022 (EPE, [202-?]). 

 

Figura 2 - Consumo de energia elétrica no Brasil por setor entre 2010 e 2022 

  

Fonte: EPE, [202-?] 

 

Com base na Figura 2, podemos concluir que o setor industrial continua a 

deter a maior demanda de energia elétrica no Brasil. No entanto, observa-se uma 

tendência de diminuição dessa participação percentual quando comparado ao 

ano de 2002. Em contraste, o setor residencial experimenta um crescimento 

expressivo, ampliando sua participação no consumo total de energia elétrica. 

Essa mudança destaca a crescente importância do setor residencial no consumo 

energético do país, refletindo transformações no perfil de consumo e, 

possivelmente, a evolução das condições socioeconômicas e demográficas. 

É importante destacar a necessidade de acompanhar e planejar 

adequadamente o suprimento de energia elétrica para atender a essa crescente 

demanda residencial, considerando a eficiência energética e a sustentabilidade 

como diretrizes fundamentais. A análise do consumo de energia elétrica por setor 

evidencia uma mudança na composição do consumo ao longo do tempo, com 

uma diminuição relativa do setor industrial e um crescimento expressivo do setor 

residencial. 

 

2.3 INFLUÊNCIAS NO CONSUMO DE ENERGIA ELÉTRICA 
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Diversos aspectos exercem influência sobre o consumo de energia 

elétrica, afetando diretamente as escolhas e demandas dos consumidores. 

Podemos categorizar esses fatores em dois grupos principais: aqueles 

relacionados à economia e demografia, e aqueles específicos do setor elétrico 

(Abrahão, 2020). 

Uma das influências mais evidentes é a variação nos preços das fontes 

energéticas e a disponibilidade de recursos naturais. Segundo Rodrigues et al. 

(2015), a matriz energética de um país está sujeita a mudanças devido às 

flutuações nos preços das fontes de energia e à quantidade de recursos naturais 

disponíveis. A disponibilidade de recursos naturais, como rios para geração 

hidrelétrica, influencia a diversidade de fontes energéticas utilizadas. O governo, 

em resposta à diminuição da acessibilidade financeira das fontes energéticas, 

muitas vezes opta por aumentar o valor da taxa de luz, o que pode ter um impacto 

direto no consumo de energia elétrica (Correia-Silva; Rodrigues, 2015). 

Os preços das despesas com energia elétrica têm um impacto direto no 

consumo, particularmente nos setores comercial e residencial, pois variações 

nos preços podem afetar a demanda por energia elétrica e estimular práticas 

mais eficientes (Oliveira; Silveira; Braga, 2000). A maioria dos consumidores 

brasileiros, cerca de 85%, está tomando medidas para reduzir o consumo de 

energia, priorizando também a diminuição dos custos energéticos, de acordo 

com relatório da empresa EY (do inglês, Ernst & Young) (Brasil, 2023). 

Outra influência importante é o desenvolvimento de tecnologias de 

produção e consumo eficientes. A crescente preocupação com questões 

ambientais tem levado a uma busca cada vez maior por eficiência no uso dos 

recursos naturais. O desenvolvimento de tecnologias mais eficientes para a 

produção e o consumo de energia elétrica pode reduzir o consumo total de 

energia, uma vez que equipamentos mais eficientes consomem menos energia 

para realizar as mesmas tarefas (Abrahão, 2020). 

O contexto político e as questões ambientais também desempenham um 

papel significativo no consumo de energia elétrica. Políticas governamentais 

podem incentivar o uso de fontes renováveis de energia, como foi o caso do 

Programa Nacional do Álcool (Proálcool) no Brasil (Correia-Silva; Rodrigues, 
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2015). A conscientização ambiental da população influencia as escolhas 

individuais em relação ao consumo de energia elétrica, levando a práticas mais 

sustentáveis (Abrahão, 2020). 

O desenvolvimento socioeconômico de um país está intimamente ligado 

à demanda por energia elétrica. À medida que a economia cresce e as condições 

de vida da população melhoram, a demanda por energia elétrica tende a 

aumentar. Isso ocorre devido ao maior consumo de bens e serviços, bem como 

ao uso mais frequente de equipamentos elétricos e eletrônicos (Francisco, 

2010). É importante ressaltar que essas influências são complexas e inter-

relacionadas. As variações nos preços das fontes energéticas, a disponibilidade 

de recursos naturais, o desenvolvimento tecnológico, as políticas 

governamentais e o contexto socioeconômico são apenas algumas das muitas 

variáveis que podem afetar o consumo de energia elétrica. Compreender essas 

influências e promover práticas sustentáveis de consumo de energia elétrica são 

desafios fundamentais para garantir o uso eficiente dos recursos e a 

sustentabilidade ambiental (Altoé et al., 2017). 

 

2.4 EFICIÊNCIA ENERGÉTICA E O CONSUMO 

 

Eficiência energética é um princípio e conjunto de práticas que têm como 

objetivo otimizar o uso dos recursos energéticos, visando alcançar um 

desempenho máximo e resultados finais com o menor consumo de energia 

possível (Ferreira; Borelli, 2015). Essa abordagem abrange a adoção de 

tecnologias mais eficientes, o aprimoramento dos processos produtivos, a 

implementação de políticas públicas e a conscientização dos consumidores. Seu 

propósito é assegurar um uso sustentável de energia, reduzindo custos, 

minimizando impactos ambientais e promovendo a segurança energética. Ao 

buscar a eficiência energética, busca-se um equilíbrio entre a demanda 

crescente por energia e a necessidade de preservação dos recursos naturais e 

do meio ambiente (Altoé et al., 2017). 
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No Brasil, foi criado o Programa de Eficiência Energética (PEE) da 

Agência Nacional de Energia Elétrica (ANEEL) pela Lei nº 9.991/2000, com o 

objetivo de promover o uso eficiente de energia elétrica em todos os setores da 

economia. Seu propósito é demonstrar a importância e a viabilidade econômica 

da melhoria da eficiência energética em equipamentos, processos e usos finais 

de energia (Ferreira; Borelli, 2015). 

Outro exemplo sobre como promover a eficiência energética utilizando 

políticas e programas governamentais é o Programa Nacional de Conservação 

de Energia Elétrica (Procel). O seu objetivo é promover o uso racional de energia 

elétrica e estimular a adoção de tecnologias mais eficientes. Atua em diversas 

frentes, como certificação de equipamentos, etiquetagem de eficiência 

energética, capacitação técnica e campanhas de conscientização (Brasil, 2023). 

O Selo Procel de Economia de Energia, que certifica produtos e equipamentos 

que apresentam alto desempenho em termos de eficiência energética (Ferreira; 

Borelli, 2015), auxilia os consumidores na escolha de produtos mais eficientes e 

contribui para a redução do consumo de energia elétrica no país. 

No âmbito das novas tecnologias, podemos citar a Robótica Avançada e 

a IA; ambos têm desempenhado um papel cada vez mais relevante na busca 

pela eficiência energética. Utilizando a flexibilidade e adaptabilidade dos robôs, 

é possível automatizar processos industriais, substituindo tarefas que 

demandam maior consumo de energia por operações mais eficientes e precisas 

(Dias et al., 2023). A aplicação de algoritmos de inteligência artificial permite o 

desenvolvimento de sistemas inteligentes capazes de otimizar o uso de energia 

em tempo real, levando em consideração as demandas e as condições 

específicas do ambiente (Mat Daut et al., 2017). Essas tecnologias contribuem 

significativamente para a redução do consumo energético e para a promoção de 

uma produção mais sustentável. 
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3 FUNDAMENTAÇÃO TEÓRICA 

 

3.1 SÉRIES TEMPORAIS: CONCEITOS E CLASSIFICAÇÃO  

 

Uma série temporal representa a evolução de uma variável ao longo do 

tempo, com observações registradas em momentos distintos. Em outras 

palavras, é uma coleção de pontos de dados coletados em intervalos regulares 

ao longo do tempo. A análise de séries temporais envolve o estudo dos padrões 

e tendências nos dados para fazer previsões sobre valores futuros (Brown, 

1959). 

As séries temporais podem ser divididas em três tipos principais: 

multivariadas, contínuas e discretas (Hamilton, 1994) Em séries temporais 

multivariadas, várias variáveis são observadas simultaneamente ao longo do 

tempo, permitindo a análise de suas interações complexas. Utilizadas em 

monitoramentos em tempo real, as séries temporais contínuas são compostas 

por observações constantes e sem intervalos fixos ao longo do tempo 

(Kirchgässner; Wolters; Hassler, 2013). As séries temporais discretas possuem 

índices discretos e representam observações feitas em pontos específicos no 

tempo. Já as séries temporais contínuas têm índices contínuos e representam 

observações registradas ao longo de um intervalo contínuo de tempo. Por sua 

vez, as séries temporais multivariadas consistem em múltiplas variáveis de 

interesse e requerem métodos estatísticos específicos para análise e previsão 

(Brown, 1959). 

O objetivo da análise de séries temporais é compreender como a série é 

gerada e realizar previsões sobre seu comportamento futuro, empregando 

modelos apropriados. É uma ferramenta útil para a tomada de decisões e o 

planejamento estratégico em diversas áreas, permitindo identificar tendências, 

sazonalidades e anomalias, além de avaliar o impacto de eventos externos na 

série. A escolha do modelo mais adequado depende dos objetivos da análise e 

do tipo de série temporal em questão (Hamilton, 1994). 
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3.1.1 Características da série temporal no consumo de energia elétrica 

 

Uma série temporal é composta por diferentes características que 

descrevem os padrões presentes nos dados ao longo do tempo: tendência, 

sazonalidade e ciclo (Brockwell; Davis, 2002). A tendência é um padrão de longo 

prazo observado na série temporal, podendo ser positiva, indicando um aumento 

gradual ao longo do tempo, ou negativa, representando uma queda gradual (Holt, 

2004). No contexto do consumo de energia elétrica, a tendência pode ser 

observada no aumento progressivo da eficiência energética em equipamentos e 

sistemas elétricos, o que leva a uma diminuição na demanda e no preço de 

energia para a mesma produção ou serviço (Nogales et al., 2002). 

A sazonalidade ocorre quando a série temporal apresenta flutuações 

regulares em determinados períodos de tempo, como mensalmente ou 

trimestralmente. No consumo de energia, a sazonalidade é influenciada pelo 

clima e pelos hábitos de consumo das pessoas, apresentando um aumento 

durante os meses mais frios ou mais quentes devido ao uso de aquecedores ou 

ar-condicionado, por exemplo (Brown, 1959). 

As flutuações irregulares no consumo de energia elétrica ao longo do dia, 

com aumento durante as horas de pico de atividade e queda durante a noite, 

quando o consumo é menor, não são consideradas ciclos, mas sim variações 

diárias (Morettin; Toloi, 2020). Os ciclos, por sua vez, ocorrem em intervalos de 

tempo de maneira irregular, mas não estão necessariamente associados a 

medidas temporais específicas. 

O componente aleatório é imprevisível e representa a variabilidade 

aleatória presente na série temporal. É a parte que não pode ser explicada pela 

tendência ou pela sazonalidade e pode ser causada por flutuações aleatórias ou 

erros de medição (Kirchgässner; Wolters; Hassler, 2013). No consumo de 

energia, o componente aleatório pode ser observado em eventos imprevisíveis, 

como a ocorrência de apagões ou falhas no fornecimento de energia elétrica 

(EPE, [202-?]). 
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A necessidade de identificar padrões históricos e fatores que influenciam 

o consumo, como sazonalidade, torna a análise de séries temporais uma técnica 

importante (Nogales et al., 2002). As informações obtidas com a análise são 

utilizadas no desenvolvimento de modelos para prever com precisão a demanda 

futura por eletricidade em diferentes períodos de tempo, garantindo a 

estabilidade do sistema elétrico e evitando interrupções no fornecimento de 

energia. 

 

3.2 MÉTODOS DE PREVISÃO  

 

Os métodos de previsão são técnicas e abordagens utilizadas para fazer 

estimativas ou previsões sobre eventos ou quantidades futuras (Hyndman; 

Athanasopoulos, 2021). 

Segundo Hyndman (2011), os métodos de previsão se dividem em dois 

grupos: quantitativos e qualitativos. Os quantitativos aplicam-se com 

informações numéricas disponíveis do passado, assumindo que padrões 

passados continuarão no futuro. Os qualitativos, por outro lado, são usados 

quando há falta de informações numéricas ou relações claras entre as variáveis, 

ajustando previsões quantitativas com base em informações não incorporadas 

ao modelo, utilizando abordagens estruturadas baseadas em julgamentos 

especializados. As previsões utilizando métodos de ambos os grupos são 

importantes para vários setores (Hyndman; Athanasopoulos, 2021). 

No contexto da previsão de consumo de energia elétrica, a análise de 

séries temporais é um método quantitativo (Hyndman, 2010), utilizado em boa 

parte das técnicas tradicionais para entender o comportamento passado e 

extrapolar esses padrões para fazer previsões futuras (Mohamed; Bodger, 

2005). O método de suavização exponencial é um exemplo de abordagem que 

usa séries temporais para previsão (DAUT et al., 2017). Esse método explora as 

informações contidas nos dados históricos, como as tendências e os padrões 

sazonais, para estimar o consumo futuro de energia elétrica (Klyuev et al., 2022). 
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Os modelos autoregressivos e de média móvel, quando combinados em 

um modelo Auto Regressivo de Média Móvel (ARMA), são amplamente 

explorados nessa abordagem (Cai, 2020). O modelo ARMA é utilizado para 

capturar a dependência linear entre os valores passados da carga e os valores 

futuros. A versão aprimorada do ARMA, conhecida como ARIMA, é aplicada 

quando o processo de carga é não estacionário, exigindo uma etapa de 

diferenciação para tornar o processo estacionário (Hyndman; Athanasopoulos, 

2021). 

O método de regressão é amplamente utilizado na abordagem baseada 

no relacionamento entre variáveis. Esse método permite estabelecer uma 

relação entre uma variável dependente (resposta) e uma ou mais variáveis 

independentes (preditoras). Na previsão de carga elétrica, a variável dependente 

pode ser representada pelo consumo de energia ou preço da eletricidade, 

enquanto as variáveis independentes estão geralmente relacionadas ao clima, 

como temperatura ou precipitação (Dong; Krzyzak; Suen, 2005). 

Existem duas formas comuns de regressão utilizadas nessa abordagem: 

Regressão Linear (RL) e Regressão Linear Múltipla (RLM). A RL é a forma mais 

simples, em que apenas uma variável independente é considerada. Já a 

regressão múltipla envolve o uso de várias variáveis independentes para estimar 

a variável dependente por meio de uma equação de regressão (Dong; Krzyzak; 

Suen, 2005). De acordo com Li et al. (2020), o RLM pode ser utilizado para prever 

os componentes de baixa frequência do consumo de energia, obtidos por meio 

da decomposição da carga elétrica. Esses componentes representam a 

tendência geral das mudanças no consumo e podem ser previstos de forma 

rápida pelo RLM. 

Outra abordagem mencionada por Klyuev et al. (Klyuev et al., 2022) é a 

análise de correlação Gray, apresentada em um estudo sobre previsão do 

consumo de eletricidade por setor industrial na China. O modelo de Gray é uma 

técnica de modelagem baseada em equações diferenciais de primeira ordem 

para realizar previsões (Lin; Liu, 2005). O modelo levou em consideração fatores 

socioeconômicos que afetam a produção industrial. Essas previsões foram 
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criadas para cada setor da economia, levando em consideração diferentes 

cenários de desenvolvimento (Xiao et al., 2018).   

O modelo Gray permite a construção de previsões com base em uma 

pequena quantidade de dados, superando métodos clássicos de previsão 

(Brockwell; Davis, 2002). O modelo diferencia-se dos métodos estatísticos 

tradicionais ao introduzir o conceito de derivadas de Gray, permitindo que se 

estabeleçam modelos semelhantes a equações diferenciais para sequências de 

dados discretos (Lin; Liu, 2005). O modelo leva em consideração fatores 

socioeconômicos que afetam a produção industrial (Brockwell; Davis, 2002). 

A árvore de decisão é um modelo de aprendizado de máquina e um 

método para realizar previsões, utilizando a análise de dados e na tomada de 

decisões. Ela é construída com base em uma estrutura em forma de árvore, em 

que cada nó representa uma decisão ou um atributo, e cada ramo representa 

uma possível resposta ou resultado dessa decisão (Cai, 2020). A metodologia é 

reconhecida como uma forma eficiente de suporte à decisão em sistemas de 

produção. De acordo com Tso (2007), é possível coletar detalhes sobre os níveis 

de posse e classificações de potência dos eletrodomésticos, e os padrões de 

uso registrados em diários para determinar o consumo de energia em Hong 

Kong. A árvore de decisão pode ser comparada com outras abordagens, como 

as redes neurais, para avaliar sua precisão na previsão do consumo de energia 

elétrica (Tso; Yau, 2007). 

Alves, Lotufo e Lopes (2013) mencionam a utilização de redes neurais 

como uma importante metodologia baseada em algoritmos de aprendizado de 

máquina. Elas são destacadas como uma abordagem poderosa para 

mapeamento de variáveis, capaz de capturar padrões complexos e 

comportamentos não lineares em dados de séries temporais (Nogales et al., 

2002). Outro método abordado por Li et al. (2012) são as MVS, o que amplia as 

possibilidades de análise e previsão em diferentes contextos.. 

Os algoritmos e técnicas abordadas anteriormente podem ser 

combinadas entre si e com outros métodos para obter um desempenho superior 

na previsão de consumo de energia elétrica. O estudo sobre previsão anual de 

carga elétrica propôs um modelo híbrido para prever o consumo anual de 
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eletricidade usando os algoritmos de LSSVM (do inglês, Least Squares Support 

Vector Machine) e de FOA (do inglês, Fruit Fly Optimization Algorithm). O modelo 

híbrido superou os modelos de regressão, o modelo LSSVM sem a aplicação de 

abordagens metaheurísticas para a otimização de parâmetros e outros métodos. 

O FOA se mostrou um poderoso método evolutivo para otimização de funções 

em um domínio contínuo, como confirmado no estudo descrito em (Li et al., 

2012). 

A previsão de consumo de energia elétrica é um campo em constante 

evolução, impulsionado pelos avanços na área de inteligência artificial e 

aprendizado de máquina. A combinação de abordagens tradicionais e técnicas 

mais avançadas tem se mostrado promissora na obtenção de previsões mais 

precisas (Mohamed; Bodger, 2005). À medida que novas pesquisas são 

realizadas e novas técnicas são desenvolvidas, espera-se que a precisão das 

previsões melhore ainda mais, possibilitando uma gestão mais eficiente e 

sustentável do consumo de energia elétrica (DAUT et al., 2017). A incorporação 

de métodos de inteligência artificial pode aprimorar significativamente as 

capacidades de previsão e análise em várias áreas de estudo (Barak; Sadegh, 

2016). A seguir, será apresentada uma revisão bibliográfica mais detalhada dos 

métodos de previsão que serão aplicados neste trabalho. 

 

3.3 MÉTODO DE SUAVIZAÇÃO EXPONENCIAL 

 

Proposta no final da década de 1950 por Brown, Holt e Winters (Hyndman; 

Athanasopoulos, 2021), a suavização exponencial é um método de previsão 

amplamente utilizado em séries temporais. O método consiste em criar previsões 

de valores futuros por meio de médias ponderadas de observações anteriores 

(Winters, 1960). As observações mais recentes possuem um peso maior, 

atribuído por parâmetros, na determinação das previsões do que as observações 

mais antigas. O método pode ser dividido em três tipos diferentes: Suavização 

Exponencial Simples, Suavização Exponencial de Holt e Suavização 

Exponencial de Holt-Winters.  

A Suavização Exponencial Simples é um modelo básico indicado quando 

não há tendência pronunciada ou sazonalidade evidente nos registros da série 
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(Brown, 1959). Nesses casos, esse método é adequado para obter previsões, 

pois se baseia na média ponderada das observações passadas, sem considerar 

explicitamente elementos de tendência ou sazonalidade. A fórmula matemática 

geral para a suavização exponencial simples é retratada na Equação 1. 

 

 𝑦̂𝑡+1 = 𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)2𝑦𝑡−2+. .. (1) 

 

No qual 𝑦̂𝑡+1, é a previsão, 𝑦𝑡,  𝑦𝑡−1  e  𝑦𝑡−2  são os valores previamente 

observados da série temporal e α é o fator de suavização. O fator de suavização, 

α, é responsável por controlar a taxa de decrescimento exponencial de 

observações anteriores. O valor de α varia entre 0 e 1 e é calculado com base 

na natureza da série e no objetivo da previsão. Quanto maior o valor de α, mais 

peso é dado às observações recentes, e vice-versa para valores menores de α 

(Makridakis; Hibon, 1997). 

Quando entendemos como a Suavização Exponencial Simples funciona, 

podemos utilizá-la como uma ferramenta inicial para prever séries temporais com 

características específicas. É uma abordagem simples e eficaz, mas devemos 

lembrar que a escolha desse modelo deve considerar a natureza dos dados e 

verificar se existem tendências, sazonalidades ou outros padrões relevantes na 

série temporal em questão (Morettin; Toloi, 2020). 

Em 1957, Charles Holt ampliou o modelo de suavização exponencial 

simples para incluir um componente de tendência. O método de Holt pode ser 

expresso de forma semelhante à suavização exponencial simples (Makridakis; 

Hibon, 1997). Essa extensão adiciona um componente de tendência, permitindo 

que o modelo capture mudanças ao longo do tempo e gere previsões mais 

realistas. Em vez de previsões estáticas, o método considera a tendência da 

série temporal, resultando em uma previsão linear baseada no passo de tempo. 

Esse avanço tornou o método mais adequado para séries temporais com 

tendências visíveis (Hyndman; Athanasopoulos, 2021). As equações para 

calcular a previsão com componente de tendência, 𝑏𝑡, são dadas pela Equação 

2 e Equação 3.  
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 𝑦̂𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡, 𝑙𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (2) 

   

  𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1.  (3) 

 

Na Equação 3, 𝑏𝑡 representa o componente de tendência previsto no 

tempo t, enquanto 𝑏𝑡−1 é a tendência prevista no instante anterior. O parâmetro 

𝛽 é o fator de suavização de tendência, variando entre 0 e 1. A equação de 

tendência é calculada com base na variação passo a passo no componente de 

nível da série temporal. Com a inclusão do componente de tendência 

multiplicado pelo passo de tempo ℎ na equação 𝑦̂𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡, as previsões 

deixam de ser estáticas e passam a ser uma função linear de ℎ (HO; XIE; GOH, 

2002). 

Os modelos de previsão apresentados anteriormente não consideravam 

a sazonalidade dos dados, o que limitava sua precisão em séries temporais com 

padrões sazonais. Para superar essa limitação, foi desenvolvido o método Holt-

Winters, uma evolução do método de Holt que incorpora um índice sazonal às 

equações de previsão (Hyndman; Athanasopoulos, 2021). Esse modelo utiliza 

equações de suavização para estimar três componentes principais: o nível, a 

tendência e o componente sazonal dos dados. As equações são ajustadas por 

meio de parâmetros de suavização, incluindo o fator de suavização da 

sazonalidade (𝛾), além dos parâmetros de nível e tendência previamente 

mencionados (Winters, 1960).  

Esse método apresenta dois modelos: o aditivo e o multiplicativo. A 

principal diferença entre eles está no tamanho das flutuações de sazonalidade. 

No modelo aditivo, essas flutuações são mais constantes, enquanto no modelo 

multiplicativo elas são proporcionais ao valor da série temporal naquele 

momento específico  (Hyndman; Athanasopoulos, 2021).  

A equação de nível calcula uma média ponderada entre a observação 

ajustada sazonalmente e a previsão não sazonal para cada tempo t. A equação 

de tendência é idêntica ao método linear de Holt. Já a equação sazonal calcula 

uma média ponderada entre o índice sazonal atual e o índice sazonal da mesma 

estação do ano passado. A frequência da sazonalidade, representada por m, 
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indica o número de períodos em um ciclo sazonal. Na Tabela 1, estão 

apresentadas as equações gerais de nível, tendência e sazonal utilizadas em 

ambos os métodos (Hyndman; Athanasopoulos, 2021). 

 

Tabela 1 - Equações do Método Aditivo e Multiplicativo do Holt-Winters 

Equação Método Aditivo Método Multiplicativo 

Geral 𝑦̂𝑡+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1) 𝑦̂𝑡+ℎ|𝑡 = (𝑙𝑡 + ℎ𝑏𝑡)𝑠𝑡+ℎ−𝑚(𝑘+1) 

Nível 𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) 𝑙𝑡 = 𝛼(
𝑦𝑡
𝑠𝑡−𝑚

) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) 

Tendência 𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1 𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

Sazonal 𝑠𝑡 = 𝛾(𝛾𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚 𝑠𝑡 = 𝛾
𝛾𝑡

(𝑙𝑡−1 + 𝑏𝑡−1)
+ (1 − 𝛾)𝑠𝑡−𝑚 

Fonte: elaborada pela própria autora 

 

O método de suavização exponencial é amplamente utilizado em diversas 

áreas, como economia, finanças e previsão de demanda, sendo uma ferramenta 

valiosa para auxiliar na tomada de decisões e no planejamento estratégico. Ao 

fornecer previsões precisas e confiáveis, esse método se torna uma opção 

importante para muitas empresas. No entanto, é fundamental compreender as 

equações e parâmetros envolvidos para aplicá-lo de forma eficaz (Werner; 

Ribeiro, 2003). 

 

3.4 MODELO ARIMA 

 

O modelo ARIMA é uma classe de modelos matemáticos utilizados para 

analisar e prever séries temporais. O método combina componentes 

autoregressivos, de média móvel e de diferenciação (Werner; Ribeiro, 2003). 

Esses componentes foram desenvolvidos para capturar a autocorrelação entre 

os valores da série temporal, abrangendo tendências, sazonalidades e 

flutuações aleatórias nos dados. Isso possibilita realizar previsões futuras com 

base no comportamento histórico da série (Werner; Ribeiro, 2003). O modelo 

ARIMA é amplamente aplicado em diversas áreas, como economia e 

engenharia, para analisar tendências, padrões sazonais e comportamentos 

complexos em dados sequenciais ao longo do tempo (Brown, 1959). 
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Os termos autoregressivo e de média móvel são componentes 

fundamentais do modelo ARIMA e são usados para modelar a dependência 

linear entre as observações de uma série temporal. O termo autoregressivo é 

responsável por capturar a relação linear entre os valores passados e presentes 

da série temporal. O termo de média móvel é utilizado para capturar a relação 

linear entre os erros passados e presentes da série temporal (Morettin; Toloi, 

2020). 

A estacionaridade do método é utilizada para prever o futuro com base 

em dados anteriores, assumindo que a média e a variância dos valores são 

constantes ao longo do tempo, utilizando conceitos de diferenciação (Barak; 

Sadegh, 2016). A estacionaridade é importante em séries temporais, pois muitos 

modelos de previsão assumem que a série é estacionária. No entanto, muitas 

séries temporais apresentam tendências e sazonalidades que as tornam não 

estacionárias. A diferenciação é um processo de transformação da série 

temporal para torná-la estacionária. O método mais comum envolve subtrair 

cada valor da série pelo valor anterior (Meloni, 2017). O modelo matemático 

resultante do método é a Equação 4. 

 

 𝑦𝑡
′ = 𝑐 + ∅1𝑦𝑡−1

′ + 𝜃1𝜀𝑡−1+. . . +𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡.  (4) 

 

No qual , 𝑦𝑡
′ , representa a série diferenciada e captura ∅1𝑦𝑡−1

′   , que reflete 

a dependência do valor anterior de 𝑦. O termo 𝜃1𝜀𝑡−1 considera o impacto dos 

erros passados sobre a variável atual, enquanto 𝜀 é o erro branco no tempo t.   

(Hyndman; Athanasopoulos, 2021). O modelo ARIMA utiliza três valores inteiros 

para realizar a parametrização: p, d e q. Esses valores são importantes porque 

definem as características da série temporal que serão consideradas no modelo, 

e variam de acordo com o cenário (Berwick, 200-?).   

1. Parâmetro p: O número de termos auto-regressivos (Hyndman; 

Athanasopoulos, 2021). No contexto da previsão de consumo de energia, 

o parâmetro p pode representar o número de valores anteriores de 

consumo de energia que são utilizados para prever o consumo futuro. Por 

exemplo, se p for igual a 2, o modelo ARIMA levará em consideração os 
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dois valores anteriores de consumo de energia para prever o consumo 

futuro (Box et al., 2015). 

2. Parâmetro d: O número de vezes que a série temporal é 

diferenciada. Na previsão do consumo de energia, o parâmetro d denota 

a quantidade de diferenciações realizadas na série temporal de consumo 

de energia para alcançar a estacionaridade (Barak; Sadegh, 2016). A 

estacionariedade é importante para a aplicação do modelo ARIMA, pois 

permite que os padrões da série temporal sejam mais facilmente 

identificados e utilizados para prever valores futuros (Hyndman; 

Athanasopoulos, 2021). 

3. Parâmetro q: O número de termos de média móvel (Hyndman; 

Athanasopoulos, 2021). Na previsão do consumo de energia, o parâmetro 

qqq pode corresponder ao número de erros passados da série temporal 

de consumo de energia utilizados para fazer a previsão do consumo futuro 

(Barak; Sadegh, 2016). Por exemplo, se qqq for igual a 1, o modelo 

ARIMA levará em consideração o erro mais recente da previsão anterior 

para prever o consumo futuro (Box et al., 2015). 

Para definir os parâmetros, é necessário realizar uma análise cuidadosa 

dos dados, identificar a ordem dos termos auto-regressivos, integrados e de 

média móvel, e avaliar a estacionariedade e a presença de sazonalidade na série 

temporal. A metodologia Box-Jenkins fornece um conjunto de técnicas e critérios 

para auxiliar na escolha dos parâmetros mais adequados para o modelo ARIMA 

(Makridakis; Hibon, 1997). 

A metodologia Box-Jenkins é uma abordagem iterativa para construção 

de modelos de previsão de séries temporais. Ela é dividida em quatro etapas 

principais: identificação, estimação, verificação e previsão. Primeiramente, na 

etapa de identificação, são exploradas as funções ACF (do inglês, 

Autocorrelation Function) e PACF (do inglês, Partial Autocorrelation Function) 

para determinar o modelo mais adequado que descreve o comportamento da 

série temporal. Em seguida, na etapa de estimação, os parâmetros do modelo 

ARIMA são estimados (HO; XIE; GOH, 2002). 
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 A partir das análises realizadas nas duas primeiras etapas, é possível 

determinar o valor de d, necessário para tornar a série estacionária. Em seguida, 

é possível utilizar as funções de ACF e a de PACF para identificar os valores de 

p e q. O valor de p é determinado pelo número de termos de autocorrelação 

significativos no autocorrelação parcial, enquanto o valor de q é determinado 

pelo número de termos de autocorrelação significativos na autocorrelação 

(Berwick, 200-?). É importante ressaltar que a escolha dos valores de p, d e q 

pode ser um processo iterativo, sendo recomendável testar diferentes 

combinações de parâmetros e avaliar o desempenho do modelo por meio de 

métricas como o MAE e o MSE (Berwick, 200-?). 

Em seguida, realiza-se a etapa de verificação, na qual avalia-se se o 

modelo estimado consegue representar de maneira adequada o comportamento 

dos dados. Essa verificação é crucial, pois, caso o modelo não seja satisfatório, 

é necessário retornar à fase de identificação e repetir o ciclo até que um modelo 

adequado seja obtido (Makridakis; Hibon, 1997). 

 

Figura 3 - Representação esquemática da metodologia de Box-Jenkins

 

Fonte: Adaptado de Makridakis e Hibon (1997) 

 

Na Figura 3, é apresentada a representação esquemática do modelo de 

Box-Jenkins, que ilustra as principais etapas do processo de análise e previsão 
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de séries temporais. Essa metodologia oferece uma abordagem sistemática e 

iterativa para a análise e previsão de séries temporais, proporcionando 

resultados confiáveis que apoiam a tomada de decisões (Makridakis; Hibon, 

1997). 

Embora o ARIMA seja uma técnica poderosa, sua eficácia depende da 

qualidade dos dados e da escolha adequada dos parâmetros do modelo. É 

importante lembrar que as previsões geradas pelo ARIMA são apenas 

estimativas e não garantem resultados precisos. É uma ferramenta útil para 

análise e previsão de séries temporais, mas deve ser utilizada com cuidado e 

avaliada juntamente com outras técnicas e informações relevantes (Barak; 

Sadegh, 2016). 

 

3.5 MÁQUINAS DE VETORES DE SUPORTE 

 

De acordo com Jakkula (2006), as Máquinas de Vetores de Suporte foram 

propostas pela primeira vez em 1992 e são um tipo de modelo de aprendizado 

de máquina supervisionado. A principal ideia por trás das MVS é encontrar um 

hiperplano de separação que possa dividir os dados em diferentes classes 

(Haykin, 1998). Para entender melhor esse princípio, é importante compreender 

o conceito de hiperplano de separação e sua importância na classificação. 

Um hiperplano é uma superfície que divide o espaço nas dimensões nas 

quais os dados estão localizados. Em um problema de classificação binária, 

existem apenas duas classes, e um hiperplano de separação pode ser uma linha, 

um plano ou uma superfície que separa as classes de dados. É importante 

ressaltar que o hiperplano não é uma linha que passa necessariamente pelos 

dados, mas sim uma superfície que separa as classes (Du et al., 2018). 

A margem de separação é a distância entre o hiperplano de separação e 

os pontos mais próximos de cada classe. O objetivo das MVS é encontrar o 

hiperplano que maximize essa margem de separação. Isso é considerado 

importante porque um maior espaço entre as classes resulta em uma melhor 

generalização do modelo e maior tolerância a erros de classificação (Meloni, 
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2017). O princípio da margem máxima é o conceito central das MVS. Para isso, 

as MVS maximizam a margem enquanto garantem que o hiperplano de 

separação não cometa erros de classificação nesses pontos mais próximos de 

cada classe, chamados vetores de suporte (Mcculloch; Pitts, 1943). 

Os vetores de suporte são os pontos de dados de treinamento que estão 

mais próximos do hiperplano de separação. Esses pontos são críticos para a 

determinação do hiperplano, pois definem sua posição e orientação. Os vetores 

de suporte são chamados assim porque são os pontos que "sustentam" ou 

"suportam" o hiperplano de separação (Lorena; Carvalho, 2003). 

A localização dos vetores de suporte é fundamental na MVS, pois eles 

influenciam o cálculo e a determinação do hiperplano de separação. Todos os 

outros pontos de treinamento que não são vetores de suporte não afetam 

diretamente o posicionamento do hiperplano, mas afetam a margem e a 

capacidade de generalização do modelo (Meloni, 2017). 

 

Figura 4 - Representação de MVS com margem larga e MVS com margem estreita 

 

Fonte: elaborada pela própria autora 

Na Figura 4, podemos observar duas classes de pontos de dados 

diferentes, sendo que cada classe é representada por uma cor distinta. No lado 

direito, temos uma representação com uma margem estreita (Berwick, 200-?). 

Isso pode causar overfitting (sobreajuste) no modelo, ou seja, ele pode se ajustar 

excessivamente aos dados de treinamento, mas apresentar um desempenho 

inferior ao lidar com dados novos ou de teste. Na imagem à direita, vemos uma 

máquina de vetores de suporte com uma margem larga, e podemos visualizar 
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os vetores de suporte, o que significa que é possível separar as classes de 

pontos de dados de maneira mais eficaz. Essa margem mais ampla permite que 

a máquina de vetores de suporte seja mais tolerante a erros de classificação e 

consiga classificar mais pontos de dados corretamente (Haykin, 1998). 

Uma das principais vantagens das MVS é a capacidade de lidar com 

dados de alta dimensão, o que significa que elas podem lidar com conjuntos de 

dados com muitas características. O hiperplano maximizado permite que as MVS 

manipulem dados não lineares. Além disso, elas são eficientes em termos de 

tempo de execução, o que significa que podem ser usadas em grandes conjuntos 

de dados. Isso é possível porque as MVS utilizam apenas um subconjunto dos 

pontos de dados para encontrar o hiperplano que separa as classes, utilizando 

os vetores de suporte (Lorena; Carvalho, 2003). 

Para lidar com espaços de alta dimensão, as MVS utilizam o conceito de 

kernels, que são funções que mapeiam os dados para espaços de alta dimensão 

(Haykin, 2002). Isso permite que a MVS encontre um hiperplano que separa os 

dados em um espaço dimensional superior, mesmo que os dados originais não 

sejam linearmente separáveis. Existem vários tipos de kernels, incluindo kernels 

lineares e polinomiais. Cada tipo de kernel tem suas próprias vantagens e 

desvantagens, e diferentes kernels podem ser usados dependendo das 

características dos dados. 

No entanto, é importante experimentar diferentes tipos de kernels para 

encontrar o que funciona melhor para o problema específico (Berwick, 200-?). A 

capacidade de classificação das MVS em diversas categorias torna essa técnica 

útil em várias aplicações, incluindo a previsão de diferentes grandezas, como o 

consumo de energia. Ao lidar com dados complexos e variados, as MVS não 

fazem suposições rígidas sobre a distribuição dos dados, o que as torna uma 

abordagem valiosa em cenários em que os padrões podem ser altamente não 

lineares e imprevisíveis (Fleck et al., 2016).. 

A utilização das MVS na previsão de diferentes grandezas é uma 

ferramenta inestimável, uma vez que permite a criação de modelos resilientes 

diante de imperfeições e erros de medição, proporcionando resultados mais 

precisos e confiáveis. Sua capacidade de prever várias categorias de dados 
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ajuda a otimizar o gerenciamento dos recursos e a tomar decisões estratégicas 

em diversas áreas (Ahmad et al., 2014). É uma abordagem poderosa e confiável 

para enfrentar os desafios complexos da previsão, oferecendo uma contribuição 

significativa para a eficiência e confiabilidade dos sistemas. Sua aplicação em 

diversas áreas evidencia sua extrema relevância, proporcionando benefícios 

significativos para a sociedade em várias situações. 

 

3.6 REDE NEURAL ARTIFICIAL 

 

O cérebro humano é composto por bilhões de neurônios que se 

comunicam por meio de sinapses excitatórias e inibitórias. Quando o efeito 

cumulativo das sinapses excitatórias que chegam a um neurônio excede um 

valor limite, o neurônio dispara e envia um sinal para outros neurônios. Esse 

processo de comunicação entre neurônios é fundamental para a realização de 

funções como pensamento, movimento, percepção e emoção. O cérebro 

humano é capaz de se adaptar e mudar ao longo do tempo, criando novas 

conexões sinápticas e modificando as existentes em resposta a estímulos e 

experiências (Haykin, 1998).  

De acordo com Haykin (1998), as redes neurais são modelos 

computacionais inspirados no cérebro humano, capazes de aprender e executar 

tarefas complexas, como classificação, reconhecimento de padrões e previsão. 

A história dessas redes remonta aos anos 1940, quando Warren McCulloch e 

Walter Pitts publicaram um artigo pioneiro descrevendo um modelo de neurônio 

artificial que serviria de base para a construção de redes neurais. Desde então, 

o desenvolvimento e a aplicação das redes neurais têm sido uma área de grande 

interesse e progresso na ciência e tecnologia (McCulloch; Pitts, 1943). 

A estrutura fundamental de uma rede neural é composta por neurônios, 

camadas e conexões. Os neurônios desempenham o papel crucial de unidades 

de processamento nas redes neurais. Eles atuam como recebedores de um ou 

mais sinais de entrada, realizam cálculos e transformações internas nesses 

sinais e, em resposta, geram um sinal de saída correspondente. As camadas 

são agrupamentos de neurônios responsáveis por trabalhar em conjunto para 
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processar os sinais de entrada e produzir sinais de saída, os quais são 

encaminhados para a próxima camada. As conexões, por sua vez, são os canais 

que interligam os neurônios, permitindo a transmissão dos sinais de uma camada 

para outra (Du et al., 2018). 

A representação de um neurônio artificial é composta por diversos 

elementos, como é possível observar na Figura 5. Primeiramente, o neurônio 

recebe um conjunto de valores de entrada, representados por um vetor de 

números, sendo que cada valor é associado a um peso sináptico. Esses pesos 

indicam a importância relativa de cada dado para o processamento do neurônio, 

podendo ser positivos ou negativos (Haykin, 1998). 

 

Figura 5 - Representação de um neurônio artificial 

 

Fonte: Adaptado de Haykin (1998) 

 

Após receber as entradas ponderadas pelos pesos, o neurônio realiza 

uma operação de agregação, somando os valores resultantes. Essa soma 

ponderada é o produto da combinação linear das entradas e pesos sinápticos, e 

ela representa a "excitação" ou "inibição" do neurônio com base nas informações 

recebidas (Hyndman; Athanasopoulos, 2021).  
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Em seguida, é aplicada uma função de ativação que, de acordo com Fleck 

et al. (2016), estabelece o limite para os valores de saída de um neurônio. Uma 

função de ativação é aplicada a cada neurônio para determinar se ele deve ser 

ativado ou não. Ela introduz não-linearidade na rede, o que é importante para 

que a rede possa aprender a partir de dados não lineares. Existem várias 

funções de ativação que podem ser utilizadas em redes neurais, como a função 

sigmoide e a função tangente hiperbólica. A escolha da função de ativação pode 

ter um impacto significativo no desempenho da rede neural (Haykin, 1998). A 

saída do neurônio é, então, o resultado da aplicação da função de ativação. Esse 

valor de saída será transmitido para os neurônios da próxima camada da rede 

neural, caso existam, dando continuidade ao processamento das informações. 

Outro parâmetro importante é o bias (viés), presente no neurônio. O viés 

é adicionado à soma ponderada antes da aplicação da função de ativação, 

permitindo ajustar o ponto de partida da função. Isso proporciona maior controle 

sobre o comportamento e a flexibilidade do neurônio durante o processo de 

aprendizado de padrões complexos. A inclusão do viés é essencial para garantir 

que o neurônio possa se adaptar melhor aos dados de entrada e realizar suas 

tarefas de forma mais eficiente e precisa (Du et al., 2018). 

Em conjunto, essas etapas de processamento do neurônio artificial 

constituem a base do funcionamento das redes neurais, permitindo a realização 

de tarefas de aprendizado, classificação, previsão e resolução de problemas em 

diversas áreas da inteligência artificial. Conforme Wilamowski (2009) e Seabold 

(2010), os tipos de arquiteturas de redes neurais citados são: 

● Multilayer Perceptron (MLP):  A arquitetura MLP é a mais antiga e uma 

das mais comumente utilizadas entre as topologias de redes neurais. Ela 

consiste em várias camadas de neurônios interconectados, incluindo uma 

camada de entrada, uma ou mais camadas ocultas e uma camada de 

saída. No entanto, as arquiteturas MLP raramente produzem resultados 

satisfatórios. 

● Bridged Multilayer Perceptron (BMLP): A arquitetura BMLP é uma 

variação do MLP em que são permitidas conexões entre as camadas, 
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representadas por linhas pontilhadas na rede. Essa arquitetura é 

considerada mais poderosa do que o MLP tradicional. 

● Fully Connected Cascade (FCC): A arquitetura FCC é outro tipo de 

topologia de rede neural que inclui apenas conexões diretas (feed-

forward). Ela é relativamente simples e eficiente, especialmente para 

problemas menores. 

● Radial Basis Function (RBF), Counterpropagation, ou Learning Vector 

Quantization (LVQ) networks: As RBF usam funções de base radial como 

ativação, sendo adequadas para aproximação de funções e classificação. 

As redes de contrapropagação possuem uma camada de entrada e uma 

camada competitiva de saída, usadas para agrupamento e classificação. 

Já as redes LVQ são supervisionadas e úteis no reconhecimento de 

padrões, treinadas para mapear vetores de entrada em classes 

específicas. 

● Recurrent Neural Network (RNN): As RNN são um tipo de rede neural 

artificial que possui uma memória interna e são projetada para lidar com 

dados sequenciais, como séries temporais, texto e fala, nos quais a ordem 

dos dados é importante. Essa memória interna permite que as RNN 

considerem informações anteriores para afetar as saídas atuais, 

tornando-as adequadas para tarefas sequenciais. O texto parece se 

concentrar na explicação dos fundamentos das RNN, incluindo sua 

formulação formal a partir de equações diferenciais e técnicas 

associadas, como o "unrolling" (desenrolamento) de uma RNN. 

A escolha da arquitetura de uma rede neural pode influenciar 

significativamente o processo de treinamento, sendo essencial considerar 

diferentes topologias e algoritmos de aprendizado para alcançar resultados 

otimizados (Wilamowski, 2009). Os algoritmos de treinamento são responsáveis 

por ajustar os pesos das conexões entre os neurônios de modo que a rede possa 

aprender a partir de dados de entrada (Haykin, 1998).  
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4 METODOLOGIA 

 

Neste capítulo apresentaremos a metodologia utilizada no trabalho para 

prever o consumo de energia elétrica no Brasil, utilizando a aplicação de quatro 

técnicas amplamente reconhecidas: Suavização Exponencial, ARIMA, MVS e 

RNA. 

 

4.1 PROCEDIMENTOS METODOLÓGICOS 

 

Para propor o procedimento metodológico do trabalho, foi essencial 

considerar os pontos de convergência e as semelhanças presentes em cada um 

dos métodos selecionados: Suavização Exponencial, ARIMA, MVS e RNA. Ao 

utilizar as mesmas séries temporais para aplicar essas técnicas, buscamos obter 

uma avaliação justa e comparativa do desempenho de cada modelo na previsão 

do consumo de energia elétrica no Brasil. 

Ao analisar os pontos em comum entre os métodos, pudemos identificar 

as etapas fundamentais que compõem o procedimento metodológico. Iniciamos 

com a escolha das ferramentas e bibliotecas apropriadas para a aplicação das 

técnicas de previsão selecionadas. Em seguida, a coleta de dados sobre o 

consumo de energia elétrica no Brasil. Prosseguimos com o pré-processamento 

e análise dos dados, nas quais nos certificamos de preparar as informações de 

maneira adequada para o treinamento dos modelos. 

Ao utilizar as mesmas séries temporais, garantimos a igualdade nas 

condições de teste e avaliação de cada modelo. Isso é fundamental para uma 

análise do desempenho relativo de cada técnica e possibilita uma escolha mais 

fundamentada do modelo mais adequado para a previsão do consumo de 

energia elétrica. 

Considerar os pontos semelhantes entre os métodos também nos permitiu 

identificar as particularidades de cada abordagem. Dessa forma, foi possível 

explorar as vantagens e limitações individuais de cada técnica, bem como 

compreender como elas podem se complementar para fornecer resultados mais 

robustos e precisos. 
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Ao levar em conta os pontos de convergência e semelhanças entre as 

técnicas e ao utilizar as mesmas séries temporais para sua aplicação, pudemos 

desenvolver um procedimento metodológico coeso e abrangente para prever o 

consumo de energia elétrica no Brasil. Essa abordagem nos permite avaliar as 

técnicas de forma justa e embasar nossas conclusões de maneira sólida, 

garantindo a confiabilidade dos resultados obtidos no trabalho. 

 

4.2 BIBLIOTECAS E FERRAMENTAS PARA ANÁLISE DE DADOS 

 

Ao escolher ferramentas para aplicar algoritmos em análise de dados e 

aprendizado de máquina com Python, foi essencial considerar a natureza e o 

tamanho dos conjuntos de dados, os tipos de análises a serem realizadas e os 

requisitos específicos do projeto. A comunidade Python oferece uma ampla 

variedade de bibliotecas e ferramentas que podem ser combinadas para atender 

às necessidades específicas de cada tarefa (Stančin; Jović, 2019). 

O Python é uma linguagem de programação extremamente versátil, sendo 

amplamente utilizada na comunidade de ciência de dados e aprendizado de 

máquina. Sua sintaxe simples e legível torna o código mais compreensível e 

facilita a colaboração em projetos complexos (Stančin; Jović, 2019). 

Ao aplicar técnicas de previsão em Python, utilizaremos algumas 

bibliotecas para implementação. Abaixo está uma lista das bibliotecas utilizadas 

e uma breve descrição de cada uma delas, segundo Seabold (2010) e Stančin 

(2019): 

● Statsmodels: Oferece uma implementação robusta e flexível de 

modelos estatísticos, incluindo modelos de suavização exponencial e 

modelos ARIMA. Ela também oferece recursos adicionais, como 

diagnósticos de resíduos e previsões de intervalo de confiança (Seabold; 

Perktold, 2010). 

● Scikit-learn: Oferece uma variedade de algoritmos para tarefas 

como classificação. A biblioteca é valorizada por sua eficiência e 

facilidade de uso, tornando o processo de implementação de algoritmos 
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de aprendizado de máquina mais acessível para os usuários (Stančin; 

Jović, 2019). 

● Keras: Focada em redes neurais, e é conhecida por ser fácil de 

usar, especialmente para a construção e prototipagem de redes neurais. 

Keras fornece uma Application Programming Interface (“Interface de 

Programação de Aplicação”) de alto nível, que pode ser executada em 

cima de outras bibliotecas de aprendizado de máquina, como o 

TensorFlow, permitindo criar redes neurais de forma rápida e intuitiva 

(Stančin; Jović, 2019). 

● Pandas: É essencial para análise de dados em Python. Ela oferece 

estruturas de dados poderosas, como a Series e o DataFrame, que 

permitem manipular e analisar dados de maneira eficiente. Com o 

Pandas, é possível carregar dados de diferentes fontes, prepará-los, 

limpar dados ausentes, fazer seleções, filtragens e agregações, tornando 

todo o processo de análise de dados mais produtivo (Stančin; Jović, 

2019). 

● NumPy: Oferece suporte para arrays multidimensionais eficientes 

e funções matemáticas de alto desempenho para trabalhar com esses 

arrays. O NumPy é amplamente utilizado para realizar operações 

numéricas em larga escala, sendo a base para várias outras bibliotecas 

de ciência de dados (Stančin; Jović, 2019). 

● Matplotlib: É uma biblioteca para criação de gráficos em Python. 

Ela permite criar uma ampla variedade de gráficos estáticos. É uma 

biblioteca robusta que facilita a visualização de dados e resultados de 

análises de forma clara e informativa (Stančin; Jović, 2019). 

● Plotly: É outra biblioteca de visualização em Python. No entanto, 

diferentemente do Matplotlib, ela permite criar gráficos interativos e 

visualizações para web. Essa biblioteca é especialmente útil para criar 

gráficos interativos, que podem ser explorados e manipulados pelo 

usuário (Stančin; Jović, 2019). 

Essas bibliotecas foram selecionadas com base em sua eficiência, 

integração e na possibilidade de utilização no Jupyter Notebook. Com o suporte 
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dessas bibliotecas, o Jupyter Notebook oferece uma base sólida para a 

exploração e pré-processamento de dados (Kluyver et al., 2016). 

 

4.3 COLETA DE DADOS PARA ANÁLISE E PREVISÃO  

 

A coleta dos dados foi realizada a partir da base de dados da EPE (EPE, 

[202-?]), uma instituição governamental brasileira responsável por produzir 

estudos e análises no setor de energia elétrica (Batista, 2003). Essa fonte 

fornece informações cruciais para a análise e previsão do consumo de energia, 

permitindo o acesso aos dados em formatos adequados para a aplicação das 

técnicas de previsão. 

A atualização desses dados é realizada pela equipe de Estatísticas 

Energéticas na Superintendência de Estudos Econômicos e Energéticos da 

EPE. Esse processo ocorre regularmente, com base nas informações de 

consumo fornecidas mensalmente pelos agentes do setor elétrico, por meio do 

Sistema de Acompanhamento do Mercado (SAM). As reuniões da Comissão 

Permanente de Análise e Acompanhamento do Mercado de energia Elétrica 

(COPAM) também desempenham um papel importante na coleta dos dados 

(EPE, [202-?]). 

A base de dados da EPE contém informações no formato XML, 

posteriormente convertidas em um CSV. O arquivo contém uma série histórica 

que inicia em 2004, com informações detalhadas sobre o consumo mensal e 

anual de energia elétrica em níveis nacional, regional e por subsistemas. Esses 

dados abrangem as classes residencial, industrial, comercial e outros (Seabold; 

Perktold, 2010).  

Para estruturar a base de dados com os 6.000 registros, divididos por 

região, mês e tipo de consumo de energia elétrica, adotamos a seguinte estrutura 

de colunas para o treinamento dos modelos: 
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• Região: Uma coluna que representa a região geográfica na qual o 

consumo de energia ocorre. 

• Data: Uma coluna que indica o mês em que o consumo de energia foi 

registrado. Cada registro terá um valor correspondente ao mês específico 

e ao ano específico. 

• Tipo de consumo: Uma coluna que descreve o tipo de consumo de 

energia elétrica. Isso pode incluir as categorias: Residencial, Comercial, 

Industrial e Outros. 

• Consumo de energia: Uma coluna que registra a quantidade de energia 

elétrica consumida em cada registro. 

 

Essa estrutura permitiu a organização dos dados de consumo de energia 

elétrica de acordo com a região, o mês e o tipo de consumo. Com esses dados, 

foi possível realizar análises e obter informações para prever o consumo de 

energia elétrica em todo o país. 

 

4.3.1 Pré-processamento dos dados 

 

Os dados obtidos a partir da base de dados da EPE têm uma finalidade 

essencial: facilitar a análise e previsão do consumo de energia elétrica no Brasil. 

Entretanto, é fundamental reconhecer que esses dados podem conter desafios 

comuns que afetam a qualidade das análises e modelagens. 

Um desses desafios é a presença de ruído nos dados, representando 

valores incorretos ou irrelevantes, e inconsistências, que se referem a 

discrepâncias ou contradições nos registros. O processo de limpeza dos dados 

é fundamental para identificar e solucionar esses problemas, visando evitar que 

prejudiquem negativamente os resultados das análises (Batista, 2003). 

Outra questão relevante é a existência de valores ausentes nos registros, 

especialmente em campos como o consumo de energia. O tratamento adequado 
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desses valores faltantes se torna imperativo para assegurar que não impacte 

negativamente a análise e a previsão. 

Adicionalmente, a base de dados pode apresentar classes 

desbalanceadas, ou seja, uma distribuição desproporcional entre as diferentes 

categorias de consumo de energia. O desbalanceamento das classes pode gerar 

resultados enviesados e pouco representativos. Assim sendo, técnicas de 

balanceamento de classes devem ser empregadas, garantindo uma análise mais 

precisa e abrangente. 

Para assegurar a confiabilidade das análises e previsões relacionadas ao 

consumo de energia elétrica, é primordial conduzir um pré-processamento 

minucioso dos dados. Isso envolve não apenas a limpeza para eliminação de 

ruídos e inconsistências, como também o tratamento de valores ausentes e a 

equalização das classes (Batista, 2003). A estruturação dos dados em um 

formato organizado, tal como detalhado anteriormente, desempenha um papel 

crucial ao facilitar a aplicação de técnicas analíticas e algorítmicas. 

A etapa de limpeza assume um papel fundamental ao detectar e tratar 

questões comuns, tais como valores ausentes, duplicados, outliers (valores 

discrepantes) e erros. Valores faltantes são preenchidos com base em médias 

ou estimativas derivadas de outros dados. Outliers são tratados por meio de 

exclusão, garantindo que não prejudiquem as análises. Posteriormente, ocorre 

a transformação dos dados, voltada para a conversão dos dados brutos em um 

formato mais adequado para análise. Isso engloba a conversão de tipos de 

dados, e a padronização das colunas que contêm informações de datas.  

 

Figura 6 - Consumo de energia Elétrica no Brasil (2004-2023) 

 

Fonte: elaborada pela própria autora 
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Com o término do processo de pré-processamento dos dados, eles se 

transformam em uma fonte confiável e eficaz para análises futuras. Com os 

dados devidamente preparados, foi possível criar um gráfico preciso sobre o 

consumo real de energia elétrica no Brasil, conforme exemplificado na Figura 6. 

 

4.3.2 Porcionamento dos dados 

 

A separação dos conjuntos de treinamento e teste é um passo crucial na 

análise de séries temporais, permitindo avaliar a capacidade de generalização 

do modelo de previsão. Essa separação é realizada por meio de dois passos 

essenciais: determinar a quantidade de dados a serem utilizados no treinamento 

do modelo e no teste. Optamos por utilizar 70% da massa de dados para o 

treinamento e os 30% restantes para o teste. A porcentagem utilizada para a 

divisão foi ajustada conforme a natureza do problema e os dados disponíveis. 

Em seguida, dividimos a série temporal em dois grupos: um conjunto de 

treinamento, com os primeiros dados até um tamanho predefinido, e um conjunto 

de teste, com os dados restantes, conforme a Tabela 4.1. Esse procedimento 

assegura que o modelo seja treinado com informações históricas conhecidas e, 

posteriormente, testado em dados mais recentes, permitindo avaliar sua 

capacidade de realizar previsões precisas. 

 

Tabela 2  - Distribuição dos Registros nos Conjuntos de Treinamento e Teste 

 

Fonte: elaborada pela própria autora 

A Figura 7 exibe visualmente essa distribuição de dados. No gráfico, a cor 

azul representa o conjunto de treinamento, composto pelos 4200 registros, 

enquanto a cor laranja simboliza o conjunto de teste, com os 1800 registros 

Conjunto Quantidade de Registros 

Treinamento 4200 

Teste 1800 
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correspondentes. Essa visualização permite uma compreensão clara da divisão 

dos dados e como eles foram distribuídos nos conjuntos de treinamento e teste. 

 

Figura 7 - Distribuição dos Dados 

 

Fonte: elaborada pela própria autora 

 

4.3.3 Decomposição da Série Temporal 

 

Após a etapa de preparação dos dados, avançamos para a decomposição 

da série, na qual examinamos detalhadamente sua tendência, sazonalidade e 

ruído. Para atingir esse objetivo, empregamos transformações ou técnicas de 

diferenciação. A decomposição da série é executada por meio da função 

seasonal_decompose da biblioteca statsmodels. Nossa escolha recaiu sobre o 

modelo multiplicativo, que presume que os componentes da série podem ser 

multiplicados para reconstruir a série original. Uma vez que aplicamos essa 

função aos dados, obtemos os componentes fundamentais da série temporal.  

Para plotar a tendência, os valores da série de tendência são definidos 

em função do tempo, criando uma linha contínua que descreve a direção geral 

dos dados. A Figura 8 representa a componente de tendência obtida após a 

decomposição da série temporal e, aparentemente, possui uma tendência 

crescente. Em outras palavras, os dados estão mostrando uma direção geral de 

crescimento ao longo do período analisado. Isso pode indicar um aumento 

contínuo em algum fenômeno ou variável ao longo do tempo. 
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Figura 8 - Tendência Decomposta 

 

 Fonte: elaborada pela própria autora 

 

Figura 9 - Sazonalidade Decomposta 

 

Fonte: elaborada pela própria autora 

Ao identificar esse padrão de crescimento na tendência, é importante 

considerar seu significado e impacto na análise dos dados. Esse comportamento 

pode ter implicações importantes na formulação de estratégias ou na realização 

de previsões futuras, pois indica uma tendência de aumento em direção a valores 

mais altos (Brown, 1959). No gráfico de sazonalidade presente na Figura 9, 

podemos identificar ciclos regulares que se repetem ao longo do período 
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analisado. A amplitude desses ciclos indica o quão significativa é a sazonalidade 

(Brockwell; Davis, 2002). 

Os resíduos em uma série temporal representam o que resta dos dados 

após a eliminação da tendência e da sazonalidade, essencialmente capturando 

as flutuações aleatórias e imprevisíveis. A análise desses resíduos é crucial, pois 

eles devem assemelhar-se a um "ruído branco", ou seja, não devem mostrar 

nenhum padrão aparente ou tendência discernível. Se padrões ou 

comportamentos não aleatórios forem identificados nos resíduos, é necessário 

refinamento do modelo ou consideração de outros fatores na análise. Analisando 

a Figura 10, é possível perceber que essa condição é satisfeita, pois não é 

possível perceber sazonalidade ou tendência. 

 

Figura 10 - Resíduo Decomposto 

 

Fonte: elaborada pela própria autora 

 

A análise dos componentes da série temporal, após a decomposição, nos 

proporcionou a identificação da tendência de crescimento e a sazonalidade, o 

que nos permitiu entender melhor o comportamento dos dados ao longo do 

tempo. A natureza do ruído branco nos resíduos sugere que a série foi bem-

modelada, o que é essencial para a aplicação de modelos estatísticos eficazes. 
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4.4 DETERMINAÇÃO DOS PARÂMETROS 

 

4.4.1 Suavização Exponencial  

 

Com base na análise detalhada dos padrões extraídos da série temporal, 

optamos pelo método de Suavização Exponencial de Holt-Winters, uma 

abordagem amplamente reconhecida por sua capacidade de lidar com dados 

que exibem complexidades em suas tendências e sazonalidades. A escolha do 

método Holt-Winters foi orientada pela natureza dos padrões identificados na 

decomposição da série temporal (Holt, 2004; Winters, 1960).  

A adequação desse método reside na capacidade de incorporar os 

componentes de tendência e sazonalidade. Dessa forma, foi possível capturar 

de forma precisa as variações ao longo do tempo e realizar previsões mais 

precisas (Winters, 1960). A seleção do método de previsão, portanto, é um 

reflexo direto da complexidade dos padrões presentes nos dados, 

proporcionando uma estrutura sólida para a geração de previsões robustas e 

informadas sobre o consumo futuro de energia elétrica. A inicialização dos 

parâmetros desempenha um papel crítico no processo. Esses parâmetros são 

essenciais para a maneira como o modelo interpreta e captura os padrões 

presentes nos dados. A inicialização é o processo de atribuir valores iniciais a 

esses parâmetros antes de ajustar o modelo aos dados de treinamento. 

No método ExponentialSmoothing do pacote statsmodels, a inicialização 

dos parâmetros é feita automaticamente durante o ajuste do modelo aos dados 

de treinamento. Ao fornecer os dados de treinamento, o número de períodos 

sazonais, a abordagem para modelar a tendência e a sazonalidade, o método 

otimiza automaticamente os valores iniciais para o nível, tendência e fatores de 

suavização. O resumo gerado com o método hwes.summary() exibe os valores 

otimizados para esses parâmetros, fornecendo uma visão clara de como o 

modelo foi ajustado aos dados de treinamento, os valores obtidos estão 

retratados na Tabela 3. 
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Tabela 3 - Parâmetros Otimizados na Metodologia de Suavização Exponencial 

Parâmetro Valor Código 

Smoothing Level 0,7828571 Alpha 

Smoothing Trend 0,0001 Beta 

Smoothing Seasonal 0,1837363 Gamma 

Nível Inicial 2,7763e+07 L.0 

Tendência Inicial 1,0033779 B.0 

Sazonalidade Inicial 0,9895800 S.0 

Fonte: elaborada pela própria autora 

 

4.4.2 ARIMA 

 

Primeiramente, é definida uma função chamada 

test_stationarity(timeseries), a qual recebe como entrada a série temporal para 

analisar a estacionariedade. Dentro da função, são calculadas duas estatísticas 

importantes: a média móvel e o desvio padrão móvel da série. Isso é feito 

utilizando a aplicação de uma janela deslizante de tamanho 12 sobre a série, ou 

seja, a cada 12 pontos consecutivos, a média e o desvio padrão são 

recalculados, gerando assim curvas suavizadas que mostram as tendências e a 

variabilidade da série ao longo do tempo. 

O próximo passo é a aplicação do teste Dickey-Fuller sobre a série 

temporal. Esse teste é utilizado para verificar se a série é estacionária ou não. 

Ele fornece um valor de teste estatístico e um valor p, selecionamos o valor de 

0,05 como valor de referência para p. Os resultados do teste Dickey-Fuller 

indicaram que o valor p de 0,601008, é maior do que 0,05, o que sugere que a 

série não é estacionária. Portanto, foi necessário realizar ajustes adicionais na 

série para torná-la estacionária antes de prosseguir com a análise de séries 

temporais.  
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Aplicamos uma técnica de diferenciação à série temporal original. Na 

etapa seguinte, visualizamos, de forma gráfica, as estatísticas de média móvel e 

desvio padrão móvel, juntamente com a série temporal original. Essa 

representação visual é de suma importância para reconhecer tendências, 

padrões e variações que ocorrem ao longo do tempo, abrangendo tanto 

tendências de longo prazo quanto alterações na amplitude das oscilações. A 

Figura 11 apresenta a série original (em azul), a média móvel (em vermelho) e o 

desvio padrão móvel (em preto), criando uma representação visual clara das 

transformações temporais. 

 

Figura 11 - Média Móvel e Desvio Padrão Móvel 

 

Fonte: elaborada pela própria autora 

 

Tabela 4 - Resultados do Teste Dickey-Fuller e Valores Correspondentes 

Resultados Valores 

Estatística do Teste -4,469555 

Valor p 0,000223 

Fonte: elaborada pela própria autora 

 

Após a diferenciação, uma nova aplicação do teste Dickey-Fuller é 

conduzida na série temporal transformada. Os resultados do teste Dickey-Fuller 

subsequente à diferenciação são apresentados na Tabela 4, exibindo 
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parâmetros essenciais como o valor do teste estatístico e o valor p. É possível 

identificar a presença de estacionariedade na série temporal após a aplicação 

da diferenciação.  

Para determinar os parâmetros p, d e q, utilizamos a função AutoARIMA 

para determinar os parâmetros de forma automatizada. Ela realiza iterações ao 

testar diferentes combinações de valores de p, d e q, selecionando os 

parâmetros que resultam no melhor ajuste do modelo. Ao usar a função 

AutoARIMA, o processo de escolha dos parâmetros é simplificado e 

automatizado. Isso evita a necessidade de uma exploração manual extensa dos 

gráficos de autocorrelação, tornando o processo mais eficiente e guiado por 

critérios estatísticos. Dessa forma, determinamos os parâmetros para a técnica 

do ARIMA. 

 

4.4.3 Máquinas de Vetores de Suporte 

 

O objetivo principal é desenvolver um modelo capaz de fazer previsões 

precisas com base nos padrões identificados nos dados de treinamento, e 

posteriormente avaliar seu desempenho nas amostras de teste utilizando. 

Primeiro, as bibliotecas necessárias são importadas, incluindo a classe MVS do 

módulo Scikit-Learn para criar o modelo. 

 Determinaremos o kernel a ser utilizado, levando em consideração a 

modelagem de relações complexas e não lineares entre variáveis. Nessa 

abordagem, o modelo foi cuidadosamente configurado com parâmetros 

essenciais: gamma, C e epsilon. 

O parâmetro gamma desempenha um papel crucial no ajuste do modelo, 

controlando a influência dos pontos de treinamento. Quanto maior o valor de 

gamma, mais os pontos de treinamento têm um impacto localizado, resultando 

em um modelo mais sensível às variações nos dados de entrada. Por outro lado, 

um valor menor de gamma permite uma influência mais ampla dos pontos de 

treinamento, resultando em um ajuste mais suave (Jakkula, 2011). 
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O parâmetro C é um fator de regularização que equilibra a busca pela 

precisão do modelo com a sua complexidade. Valores mais altos de C tendem a 

priorizar um ajuste mais exato aos dados de treinamento, mas podem resultar 

em um modelo mais complexo e suscetível a overfitting. Em contrapartida, 

valores menores de C tendem a favorecer um modelo mais simples, evitando um 

ajuste excessivo aos dados de treinamento (Jakkula, 2011). 

O epsilon, por sua vez, desempenha um papel importante ao determinar 

a margem de erro aceitável para as previsões do modelo. Ele estabelece um 

limite para a diferença entre as previsões e os valores reais, permitindo que o 

modelo seja mais flexível na acomodação das variações nos dados (Jakkula, 

2011). 

Vale destacar que os valores específicos dos parâmetros gamma, C e 

epsilon foram otimizados por meio da técnica de Grid Search, a qual explora 

diversas combinações desses parâmetros para encontrar a configuração mais 

adequada ao problema em questão. Essa abordagem visa obter um equilíbrio 

ideal entre precisão e generalização do modelo, resultando em previsões mais 

confiáveis e robustas para os dados de interesse. 

Em seguida, o modelo passou por um processo de treinamento utilizando 

os dados de treinamento e suas saídas desejadas. Após a conclusão do 

treinamento, o modelo foi utilizado para fazer previsões tanto nos conjuntos de 

treinamento quanto nos de teste, gerando matrizes de resultados. Para facilitar 

a comparação com os valores reais, essas previsões foram revertidas para a 

escala original por meio de um processo de escalonamento. Com o objetivo de 

possibilitar uma análise visual, as datas correspondentes aos conjuntos de 

dados de treinamento e teste foram extraídas. Isso permitiu a criação de gráficos 

que ilustram as previsões feitas pelo modelo em relação aos valores reais. 

 

4.4.4 Rede Neural Artificial  

 

Para realizar a previsão de séries temporais, utilizamos uma rede neural 

(RNA) com o framework TensorFlow/Keras. O processo começa com o 
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carregamento das bibliotecas necessárias para processar e treinar a rede neural. 

Em seguida, os dados são carregados a partir de um arquivo CSV utilizando o 

pandas. A coluna 'Consumo de energia' foi selecionada, representando o volume 

de consumo de energia elétrica em intervalos mensais. 

Para garantir que a rede neural seja capaz de aprender com os dados, 

eles são normalizados usando a função MinMaxScaler. A normalização é 

importante para evitar que valores maiores dominem o treinamento, o que 

poderia prejudicar o desempenho da rede. 

O código faz uso da classe TimeseriesGenerator do Keras para criar um 

gerador de séries temporais. Esse gerador divide os dados de treinamento em 

sequências de tamanho definidos na seção 3.3.2, especificamente, n_input, e 

também os dados de teste. Cada uma dessas sequências é utilizada como 

entrada para o modelo, e a próxima observação subsequente é usada como a 

saída correspondente.  

Ao dividir os dados em sequências, o gerador estabelece uma relação 

direta entre as entradas e as saídas subsequentes. Isso capacita a rede neural 

a entender a dependência entre os valores passados e futuros da série temporal. 

Esse processo de treinamento sequencial é fundamental para modelar e 

capturar a dinâmica temporal presente nos dados de série temporal (Li et al., 

2020). A abordagem de usar sequências como entrada e saída permite que a 

rede neural aprenda a reconhecer padrões complexos ao longo do tempo, 

aprimorando assim suas capacidades de previsão.  

A etapa central é a criação do modelo RNA. Um modelo sequencial é 

criado usando o Keras, que é uma pilha linear de camadas. Primeiramente, uma 

camada densa com 100 neurônios é adicionada para capturar os padrões 

temporais nos dados. Em seguida, uma camada de saída com um único neurônio 

é incorporada. O modelo é treinado usando o gerador de séries temporais criado 

previamente, e o processo de treinamento é realizado por 50 épocas, ajustando 

os pesos da rede com o objetivo de minimizar o erro quadrático médio entre as 

previsões e os valores reais. Esse número de épocas foi escolhido com base em 

uma combinação de experimentação e considerações práticas. 
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Após o treinamento, o código realiza previsões sequenciais para o 

conjunto de teste. A cada iteração do loop, a rede neural prevê a próxima 

observação com base nas observações anteriores. As previsões são, então, 

transformadas de volta para a escala original, a fim de facilitar a interpretação e 

a comparação com os valores reais. 

 

4.5 MÉTRICAS DE AVALIAÇÃO 

 

De acordo com as considerações de Chicco, Warrens e Jurman (2021), 

as métricas de avaliação mencionadas são positivamente incorporadas à 

metodologia da pesquisa para uma análise abrangente e precisa do 

desempenho dos modelos. 

Mean Absolute Error: É uma métrica que mede o erro absoluto médio 

entre os valores reais e os valores previstos pelo modelo de regressão. Ela é 

calculado como a média das diferenças absolutas entre os valores reais e 

previstos. O MAE é útil para avaliar a magnitude média dos erros do modelo, 

mas não leva em consideração a direção dos erros (Chicco; Warrens; Jurman, 

2021). 

Mean Squared Error: É uma métrica que mede o erro quadrático médio 

entre os valores reais e os valores previstos pelo modelo de regressão. Ela é 

calculado como a média das diferenças ao quadrado entre os valores reais e 

previstos. O MSE é sensível a outliers, uma vez que os erros são elevados ao 

quadrado. Valores mais baixos de MSE indicam um melhor ajuste do modelo aos 

dados (Chicco; Warrens; Jurman, 2021). 

Root Mean-Squared Error: É a raiz quadrada do MSE e representa a 

média da raiz quadrada das diferenças ao quadrado entre os valores reais e 

previstos. O RMSE é uma medida de erro semelhante ao MSE, mas está na 

mesma escala das unidades originais dos dados, sendo interpretável mais 

facilmente. Assim como o MSE, valores mais baixos de RMSE indicam um 

melhor ajuste do modelo (Chicco; Warrens; Jurman, 2021). 
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5 RESULTADOS E DISCUSSÕES 

 

A técnica proposta para prever o consumo de energia elétrica no Brasil é 

baseada em uma abordagem abrangente e comparativa, envolvendo a aplicação 

de quatro técnicas de previsão amplamente reconhecidas: Suavização 

Exponencial, ARIMA, MVS e RNA. Essa metodologia foi desenvolvida com o 

objetivo de proporcionar uma análise robusta e precisa das tendências de 

consumo de energia elétrica, permitindo uma compreensão mais profunda dos 

padrões temporais e sazonais presentes nos dados. 

A decomposição da série temporal é realizada para analisar a tendência, 

a sazonalidade e o ruído presentes nos dados. Esse processo é realizado 

utilizando o método de Suavização Exponencial de Holt-Winters, que é 

especialmente adequado para lidar com dados que exibem complexidades em 

suas tendências e sazonalidades. O método ARIMA é aplicado para modelar os 

componentes autoregressivos e de média móvel da série temporal, a fim de 

identificar padrões temporais e sazonais. 

São determinados parâmetros críticos, como gamma, C e epsilon, para 

criar um modelo que possa fazer previsões precisas e equilibradas. Essa técnica 

é particularmente útil para capturar relações complexas e não-lineares entre as 

variáveis de consumo de energia elétrica. A técnica de RNA utiliza uma rede 

neural para modelar os padrões temporais nos dados de consumo de energia 

elétrica. Essa arquitetura permite que a rede aprenda a dependência entre os 

valores passados e futuros da série temporal, melhorando sua capacidade de 

fazer previsões precisas. 

A avaliação das técnicas é conduzida por meio de métricas de 

desempenho, que permitem comparar o desempenho dos modelos em relação 

aos valores reais de consumo de energia elétrica foi feita utilizando somente o 

conjunto de teste.  

A proposta de Previsão de Consumo de energia Elétrica no Brasil é 

delineada por meio de um conjunto de etapas profundamente interconectadas, 

todas direcionadas ao objetivo central de avaliar a precisão de diferentes 

técnicas de previsão. O diagrama esquemático que ilustra a sequência de 
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execução dessas etapas pode ser visualizado na Figura 12. Cada etapa do 

fluxograma desempenha um papel fundamental na construção e refinamento da 

análise dos modelos. 

 

Figura 12 - Fluxograma da Proposta de Previsão de Consumo de energia Elétrica no Brasil 

 

Fonte: elaborada pela própria autora 
 

5.1 SUAVIZAÇÃO EXPONENCIAL  
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Nesta seção, exploramos os resultados da previsão do consumo de 

energia elétrica no Brasil utilizando a técnica de Suavização Exponencial de Holt-

Winters. Embora a Suavização Exponencial seja uma abordagem amplamente 

utilizada para modelar séries temporais e tenha mostrado eficácia em capturar 

padrões sazonais e de tendência, nossas descobertas destacam algumas 

limitações importantes associadas a essa técnica específica. 

Ao aplicar a Suavização Exponencial para a previsão do consumo de 

energia elétrica, obtivemos resultados promissores, porém, uma análise mais 

profunda revela que a técnica pode não ser tão confiável quanto inicialmente 

esperávamos. A Tabela 5 apresenta os resultados detalhados da previsão 

utilizando Suavização Exponencial: 

 

Tabela 5 - Avaliação de Desempenho da Previsão utilizando Suavização Exponencial 

Métrica Valor 

Mean Absolute Error (MAE) 0,656307 

Mean Squared Error (MSE) 0,0391339 

Root Mean-Squared Error 

(RMSE) 
0,1979314 

Fonte: elaborada pela própria autora 

 

Os resultados obtidos a partir dos valores do MAE revelam que as 

previsões derivadas da técnica de Suavização Exponencial apresentam um 

desvio médio de 0,1656 unidades em relação aos valores reais do consumo de 

energia elétrica. Esse resultado sugere que as estimativas geradas por essa 

abordagem podem estar consideravelmente afastadas da realidade. 

Avaliando o desempenho por meio da MSE e da RMSE é ainda mais 

evidente a limitação da técnica de Suavização Exponencial. Os valores elevados 

dessas métricas destacam que as previsões frequentemente apresentam 

desvios significativos em relação aos valores reais, resultando em um nível 

considerável de erro quadrático médio. 
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A Figura 13 complementa essa análise ao apresentar o gráfico 

comparativo das previsões, em laranja, e dos valores reais, em azul. Nota-se 

que as discrepâncias na previsão são mais notáveis, especialmente no início do 

período analisado. Essa observação reforça as limitações apontadas nas 

métricas de erro mencionadas anteriormente e sublinha a necessidade de 

aprimoramentos na técnica de Suavização Exponencial para melhor capturar os 

padrões complexos presentes nos dados. 

 

Figura 13 - Previsão versus Consumo Efetivo de energia Elétrica: Suavização Exponencial 

 

Fonte: elaborada pela própria autora 

 

A análise do gráfico e das métricas destaca a necessidade de considerar 

cuidadosamente as limitações da Suavização Exponencial ao utilizar o método 

para prever o consumo de energia elétrica. Embora a técnica tenha mostrado 

promessas iniciais, sua falta de confiabilidade em produzir previsões precisas e 

consistentes levanta preocupações sobre sua aplicabilidade prática em cenários 

de previsão de longo prazo. 

 

5.2 ARIMA 

 

Os resultados obtidos ao aplicar a metodologia ARIMA para prever o 

consumo de energia elétrica no Brasil são apresentados na Tabela 6. A Tabela 
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oferece uma visão abrangente do desempenho da abordagem ARIMA na 

previsão, revelando importantes métricas de avaliação: 

 

Tabela 6 - Avaliação de Desempenho da Metodologia ARIMA 

Métrica Valor 

Mean Absolute Error (MAE) 0,0923561 

Mean Squared Error (MSE) 0,0187832 

Root Mean-Squared Error 

(RMSE) 
‘0,1347583 

Fonte: elaborada pela própria autora 

 

A metodologia ARIMA combinou componentes autoregressivos, 

integrados e de média móvel para modelar padrões temporais complexos 

presentes nos dados de consumo de energia elétrica. A etapa de diferenciação 

integrada permitiu transformar a série temporal original em uma série 

estacionária, tornando-a mais adequada para a modelagem ARIMA. A 

identificação dos parâmetros p, d e q do modelo ARIMA foi realizada de forma 

automatizada, simplificando o processo de seleção e resultando em uma 

abordagem mais eficiente em comparação com métodos manuais. 

A representação gráfica das estatísticas de média móvel e desvio padrão 

móvel, juntamente com a série temporal original, ofereceu informações visuais 

valiosas sobre tendências, padrões e variações ao longo do tempo. A aplicação 

do teste Dickey-Fuller auxiliou na avaliação da estacionariedade da série, 

garantindo que o modelo ARIMA fosse aplicado a dados apropriados.  

O gráfico apresentado na Figura 14 ilustra a previsão (em laranja) em 

comparação com o consumo real (em azul). Uma análise visual rápida revela 

uma notável proximidade entre os valores previstos e reais. Esse alinhamento 

mais estreito entre as previsões e a realidade desempenha um papel crucial na 

otimização da alocação de recursos e na tomada de decisões informadas em 

relação à gestão energética. 
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Figura 14 - Comparação entre Previsão (laranja) e Consumo Real (azul) de energia Elétrica 
pelo método ARIMA 

 

Fonte: elaborada pela própria autora 

 

A abordagem ARIMA demonstrou ser robusta e eficaz na previsão do 

consumo de energia elétrica no Brasil. Suas conquistas superiores em 

comparação com o modelo de Suavização Exponencial ressaltaram sua notável 

aplicabilidade e potencial para aprimorar significativamente a precisão das 

previsões. 

 

5.3 MÁQUINAS DE VETORES DE SUPORTE 

 

Durante a avaliação do modelo de Máquinas de Vetores de Suporte para 

previsão de consumo de energia elétrica, dedicamos uma fase crucial à 

otimização dos parâmetros essenciais, visando alcançar um desempenho 

maximizado. Nesse processo de aprimoramento, seguimos uma abordagem 

sequencial, priorizando as configurações que resultassem em erros de previsão 

minimizados, conforme as métricas de avaliação analisadas. 

A primeira etapa desse processo envolveu a seleção da função de kernel 

mais apropriada. Diversas funções de kernel foram testadas, e a função RBF se 

destacou ao proporcionar os melhores resultados. A função RBF demonstrou 

habilidade para acompanhar de maneira eficaz a variação do consumo de 

energia elétrica observada durante o período da pandemia. Os resultados 

promissores obtidos por meio da aplicação da técnica de Máquinas de Vetores 
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de Suporte para a previsão de consumo de energia elétrica são apresentados na 

Tabela 7. 

Tabela 7– Métricas de Avaliação MVS 

Métrica Valor 

Mean Absolute Error (MAE) 0,0367781 

Mean Squared Error (MSE) 0,0046713 

Root Mean-Squared Error 

(RMSE) 
0,0465637 

Fonte: elaborada pela própria autora 

 

A interpretação dessas métricas ressalta o desempenho promissor do 

modelo MVS na previsão de consumo de energia elétrica. Valores baixos em 

todas as métricas indicam uma precisão substancialmente maior das previsões 

em relação aos valores reais.  

Essa análise revela um progresso notável em comparação com as 

técnicas de Suavização Exponencial e ARIMA, anteriormente exploradas. Ao 

demonstrar um desempenho superior, o MVS evidencia seu potencial para fazer 

contribuições substanciais no âmbito das tomadas de decisões estratégicas e do 

planejamento otimizado do fornecimento de energia elétrica. 

Na Figura 15, podemos ver o gráfico representativo da previsão e do 

consumo real de energia elétrica. Esse visual ilustrativo reforça de maneira 

concreta a precisão da previsão do modelo MVS, enfatizando como suas 

estimativas estão alinhadas de forma notável com os valores reais de consumo. 

Esse aspecto visual não apenas corrobora a validade do modelo, mas também 

torna tangível seu papel na otimização das operações e na gestão eficaz dos 

recursos energéticos.  
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Figura 15 - Previsão utilizando o método MVS 

 

Fonte: elaborada pela própria autora 

 

Comprovando sua capacidade, o MVS não apenas oferece uma previsão 

confiável, mas também abre portas para aprimorar significativamente a forma 

como abordamos a gestão e a alocação dos recursos energéticos. A habilidade 

do MVS em capturar padrões complexos e sutilezas nos dados de consumo 

elétrico resulta em uma ferramenta confiável para informar as estratégias de 

suprimento energético. 

 

5.4 REDE NEURAL ARTIFICIAL 

 

Em nossa busca contínua por aprimorar a precisão das previsões de 

consumo de energia elétrica no contexto específico do Brasil, exploramos o 

potencial das Redes Neurais. Inicialmente, direcionamos nossos esforços para 

a implementação de um MLP, uma abordagem padrão em aprendizado de 

máquina. Entretanto, ao aplicarmos o MLP à nossa série temporal de consumo 

de energia elétrica no Brasil, os resultados alcançados não atenderam às nossas 

expectativas de precisão.  

Diante desse desafio, redirecionamos nossa abordagem e voltamos 

nossa atenção para as Redes Neurais de Longa Memória de Curto Prazo, uma 

variação avançada das redes neurais recorrentes. A escolha da RNA se mostrou 

estratégica, uma vez que essa arquitetura é especialmente adequada para 
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capturar dependências temporais de longo alcance (Li et al., 2020), o que é 

crucial para a previsão precisa de séries temporais complexas, como o consumo 

de energia elétrica. 

Ao considerar a natureza peculiar da série temporal de consumo de 

energia elétrica no Brasil, caracterizada por variações sazonais, tendências de 

longo prazo e fatores imprevisíveis, reconhecemos que uma abordagem mais 

sofisticada era necessária. A escolha da RNA não apenas respeitou essa 

complexidade, mas também se alinhou com nossa meta de obter resultados mais 

promissores. Avaliar a performance de modelos de previsão é fundamental para 

entender a confiabilidade de suas estimativas. A Tabela 8 apresenta os 

resultados detalhados da previsão utilizando a RNA. 

 

Tabela 8 - Métricas de Desempenho da Previsão com RNA 

Métrica Valor 

Mean Absolute Error (MAE) 0,0230906 

Mean Squared Error (MSE) 0,0038744 

Root Mean-Squared Error 

(RMSE) 
0,0263905 

Fonte: elaborada pela própria autora 

 

Os resultados claramente evidenciam a notável superioridade da 

abordagem RNA em relação a outras metodologias, tanto em termos de precisão 

quanto de confiabilidade, no contexto da previsão de consumo de energia 

elétrica. O valor do MAE é de 0,0230906, indicando que, em média, as previsões 

geradas pela RNA desviam cerca de 0,0230906 unidades dos valores reais. 

Esse desvio médio atesta a impressionante capacidade da RNA em capturar os 

padrões subjacentes presentes na série temporal. Ao considerarmos o MSE de 

0,0038744 e a RMSE de 0,0263905, é possível observar um nível 

consistentemente baixo de erro quadrático médio entre as previsões e os valores 

reais. 
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A proeminente superioridade da abordagem RNA deriva de sua habilidade 

ímpar em capturar relações complexas e não lineares presentes nos dados, bem 

como de sua competência em aprender sequências de padrões de longo 

alcance. Cabe ressaltar, entretanto, que a RNA possui uma complexidade 

computacional mais elevada em comparação com abordagens mais simples (Li 

et al., 2020).  

Com uma abordagem visual, a Figura 16 traz uma representação gráfica 

que ressalta as previsões em laranja e os valores reais em azul, permitindo uma 

compreensão imediata das semelhanças entre essas duas séries. Essa 

visualização oferece uma perspectiva tangível das tendências, flutuações e 

desvios presentes ao longo do período analisado. A clareza proporcionada pela 

Figura 16 contribui para uma análise mais profunda do desempenho da 

abordagem RNA na previsão do consumo de energia elétrica, permitindo 

identificar os momentos de maior alinhamento ou divergência entre as previsões 

e os dados reais. Os resultados enfatizam a eficácia da abordagem RNA na 

previsão do consumo de energia elétrica, destacando sua habilidade singular em 

apreender padrões complexos e a sequencialidade intrínseca dos dados.  

 

Figura 16 - Comparação entre Previsões e Valores Reais de Consumo de energia Elétrica 

 

Fonte: elaborada pela própria autora 

 

5.5 COMPARAÇÃO ENTRE OS MÉTODOS 
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A análise comparativa dos métodos de previsão de consumo de energia 

elétrica no Brasil - Suavização Exponencial, ARIMA, MVS e RNA - revela 

informações valiosas sobre suas capacidades e limitações. 

A técnica de Suavização Exponencial é amplamente utilizada para 

modelar séries temporais e mostra eficácia na captura de padrões sazonais e de 

tendência. No entanto, suas limitações se tornam evidentes ao apresentar 

desvios significativos em relação aos valores reais, resultando em menor 

precisão em comparação com outros métodos. Os desvios em relação aos 

valores reais, como evidenciado pelo Mean Absolute Error de 0,1656, levantam 

preocupações sobre sua confiabilidade. 

O modelo ARIMA, por sua vez, exibe uma boa precisão na previsão e é 

capaz de lidar com componentes autoregressivos, integrados e de média móvel, 

o que o torna eficaz na modelagem de padrões temporais lineares. No entanto, 

suas limitações residem na possível falta de eficácia na captura de padrões não 

lineares e complexos. As métricas, como o MSE de 0,0187, indicam uma 

melhoria em relação à Suavização Exponencial, mas há espaço para 

aprimoramento. 

Os resultados evidenciaram um desempenho superior do modelo ARIMA 

em comparação com o modelo de Suavização Exponencial, anteriormente 

utilizado para prever o consumo de energia elétrica. Essas métricas de avaliação 

destacaram a maior precisão do ARIMA na previsão, crucial para tomar decisões 

informadas e otimizar a gestão de recursos. 

As Máquinas de Vetores de Suporte se destacam ao proporcionar uma 

precisão substancialmente maior das previsões em relação aos valores reais. 

Essa abordagem é capaz de capturar relações complexas e minimizar erros. No 

entanto, a otimização de parâmetros é necessária, e foi exigente em termos 

computacionais. A abordagem MVS se destaca com métricas promissoras, como 

MAE de 0,0367, sinalizando uma precisão substancialmente maior em relação 

aos valores reais. No entanto, requer otimização de parâmetros e pode ser 

computacionalmente intensivo. 

Essa análise revela um progresso notável em comparação com as 

técnicas de Suavização Exponencial e ARIMA, anteriormente exploradas. Ao 
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demonstrar um desempenho superior, o MVS evidencia o seu potencial para 

fazer contribuições substanciais no âmbito das tomadas de decisões 

estratégicas e do planejamento otimizado do fornecimento de energia elétrica. 

A RNA emerge como a vencedora clara. Com um MAE de apenas 0,0231, 

demonstra notável superioridade em precisão e confiabilidade. A RNA capta 

relações complexas e sequenciais, sendo especialmente adequada para séries 

temporais complexas como o consumo de energia elétrica. Apesar da 

complexidade computacional mais alta, sua habilidade em modelar padrões de 

longo alcance a torna a opção preferida para decisões informadas e otimização 

da gestão de recursos. 

A RNA se destaca como a melhor escolha para a previsão de consumo 

de energia elétrica no Brasil. Sua capacidade de previsão precisa e confiável, 

juntamente com a habilidade de modelar padrões complexos, a coloca à frente 

das outras abordagens consideradas, impulsionando a tomada de decisões 

informadas e otimização dos recursos energéticos. 

No entanto, é importante destacar que a escolha do modelo final deve 

considerar não apenas as métricas de avaliação, mas também a adequação do 

modelo às características dos dados, a simplicidade do modelo, a 

interpretabilidade das previsões e a eficiência computacional. A avaliação 

completa deve considerar um equilíbrio entre esses fatores para selecionar a 

abordagem mais adequada para a previsão do consumo de energia elétrica no 

Brasil. 
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6 CONCLUSÃO 

 

A análise realizada demonstra a importância e a viabilidade das 

abordagens avançadas de previsão, utilizando tanto métodos tradicionais quanto 

técnicas de Inteligência Artificial (IA) e Aprendizado de Máquina (ML), no 

contexto da previsão de consumo de energia elétrica no Brasil. O setor 

energético desempenha um papel fundamental na busca por soluções 

sustentáveis diante das preocupações globais com as mudanças climáticas, e a 

precisão das previsões é essencial para garantir um fornecimento eficiente e 

sustentável. 

A comparação detalhada entre abordagens estatísticas e modelos de ML, 

forneceu informações valiosas sobre suas respectivas capacidades e limitações. 

A análise demonstra que a escolha da técnica de previsão deve considerar uma 

série de fatores, incluindo desempenho, adaptabilidade, complexidade 

computacional e a adequação aos dados específicos. 

No contexto específico da previsão de consumo de energia elétrica no 

Brasil, a abordagem vencedora é claramente a RNA. Sua capacidade de modelar 

padrões complexos, sazonalidades e relações não lineares nos dados de 

consumo de energia elétrica a torna uma escolha superior. Embora possa 

requerer mais recursos computacionais, seus benefícios em termos de precisão 

e capacidade de previsão superam amplamente essa consideração. 

No entanto, é fundamental reconhecer que cada técnica abordada tem 

seu próprio conjunto de vantagens e desafios, e a seleção da abordagem 

adequada dependerá das necessidades específicas da empresa do setor 

energético. As conclusões deste estudo fornecem uma base sólida para a 

tomada de decisões informadas, otimização de recursos e gestão eficaz do 

consumo de energia elétrica. 

Em última análise, este trabalho contribui significativamente para a 

compreensão das melhores práticas na previsão de consumo de energia elétrica. 

À medida que o cenário global continua a evoluir, a aplicação de abordagens 

avançadas de previsão, como a Rede Neural Artificial RNA, permitirá uma 
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adaptação mais ágil e uma resposta mais eficaz aos desafios futuros, 

promovendo um futuro energético mais sustentável e confiável para o Brasil. 
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