Everardo Sampaio, UFRPE.
Yony Sampaio, UFPE.
Leonardo Sampaio, UFRPE, UFPE.

Muitos produtores de leite do NE, especialmen te no Agreste de Pernambuco, acreditam que as melhores produtoras: são as mesticas Holandês X Zebu. É prática obter essas mesticas pelo cruzamento alternado de machos Zebu e Holandês com as fêmeas mesticaz resultantes de cruzamentos an teriores, seguindo o mesmo esquema de cruzmento alternado. Ape sar da prática ser comum, não existe um conhecimento pleno grau de sangue das mestiças usadas, sendo que a maioria produtores acredita que elas são 1/2 Zebu 1/2 Holandês. Essa no ta pretende esclarecer o ponto, calculando matematicamente graus de sangue que se obtém seguindo o esquema de cruzamentos alternados, e partindo de um rebanho de vacas Zebu puras e tou ros Holandês puros. Assume-se que os animais são puros, bem co mo os touros dos sucessivos cruzamentos alternados, para facilidade de cálculo, porque se desconhece, em geral, a verdadeira pureza racial dos animais, e, porque, em geral, as impurezas são pequenas e causariam desvios irrelevantes depois de algumas ge rações. É óbvio que os cálculos seriam os mesmos, se se partis se de um rebanho de vacas Holandês e touros Zebu.

O esquema de cruzamento seria o seguinte:

				*
о́нхог	$F_{1} = 1/2$	=	1/2 .	Z
orz x Q F ₁	$F_2 = 1/2 + 1/2^2$	=	3/4	Z
o″нхұғ ₂	$F_3 = 1/2^2 + 1/2^3$	=	3/8	Z
o z x Q F ₃	$F_4 = 1/2 + 1/2^3 + 1/2^4$	=	11/16	Z
o'нхұғ ₄	$F_5 = 1/2^2 + 1/2^4 + 1/2^5$	=	11/32	Z
o″z×ǫF ₅	$F_6 = 1/2 + 1/2^3 + 1/2^5 + 1/2^6$	=	43/64	Z
o¹нхǫг ₆	$F_7 = 1/2^2 + 1/2^4 + 1/2^6 + 1/2^7$	=	43/128	Z
O'Z×QF ₇	$F_8 = 1/2 + 1/2^3 + 1/2^5 + 1/2^7 + 1/2^8$	= 1	71/256	Z
O"H×OF8	$F_9 = 1/2^2 + 1/2^4 + 1/2^6 + 1/2^8 + 1/2^9$	=]	71/512	Z

A essa altura, torna-se claro que F_{2n} e F_{2n+1} podem ser decompostos em duas progressões geométricas. Para saber que grau de sangue as mestiças teriam a alguma altura do esquema de cruzamento, bastaria calcular a soma dos membros da progressão, o que foi feito e apresentado na coluna da direita. Mais interessante é calcular a que grau de sangue tende o esquema de cruzamento, depois de um número grande de gerações. Para tanto, basta calcular a soma dos membros da progressão quando na tende para o infinito.

* O grau de sangue H é, obviamente, 1-Z e, por ser de fácil cálculo, deixa de ser apresentado.

Calculando:

$$S_{\text{F2n}} = \frac{\frac{1}{2^{2n}} \times \frac{1}{2^2} - 1}{\frac{1}{2^2} - 1} \text{ se n-xentão } S_{\text{F2n}} = \frac{-1}{2} = \frac{2}{3}$$

$$S_{\text{F2n+1}} = \frac{\frac{1}{2^{2n+1}} \times \frac{1}{2^2}}{\frac{1}{2^2}}$$
 se na centão $S_{\text{F2n+1}} = \frac{-1}{\frac{4}{4}} = \frac{1}{3}$

Como se vê, a tendência desse esquema de cruzamento é a formação de vacas mestiças com grau de sangue 2/3 de uma raça e 1/3 de outra, alternando-se a predominância de uma raça com a outra. As mestiças seriam 2/3 da raça do pai e 1/3 da outra raça. Nota-se que, para efeito prático, depois do quinto cruzamento já se começa a ter animais com alternância de 2/3 - 1/3 de grau de sangue.