

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE AGRONOMIA

Relatório do Estágio Curricular Supervisionado Obrigatório

Jordana Antônia dos Santos Silva

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE AGRONOMIA

Reação de genótipos de berinjela visando resistência à *Ralstonia* solanacearum

SUMÁRIO

INTRODUÇÃO)	04
OBJETIVOS		05
OBJETIV	O GERAL	05
OBETIV	O ESPECIFICO	05
METODOLOG	IA	06
OBTENÇ	ÇÃO DE MATERIAL VEGETAL	06
BERINJE	ÇÃO DE GENÓTIPOS DE ELA QUANTO A RESISTÊNCIA À A-BACTERIANA	06
	E DISCUSSÕES	09
CONCLUSÕES	S	09
REFERÊNCIAS	S	10
ANEXOS		11

1. INTRODUÇÃO

A berinjela (*Solanum melongena* L.) é uma planta pertencente à família Solanaceae, originária de regiões tropicais do oriente, foi introduzida no Brasil por imigrantes árabes. É consumida principalmente nos Estados de São Paulo, Rio de Janeiro e Paraná, no entanto, o seu consumo vem crescendo principalmente motivado pela procura por alimentos mais saudáveis. O fruto desta hortaliça é bastante nutritivo, fonte de vitaminas e sais minerais, normalmente é consumido cozido ou assado, podendo ser utilizado no preparo de diversos pratos. Além disso, a berinjela possui propriedades medicinais, destacando-se seu potencial como redutor do nível de colesterol (ANTONINI et al., 2002; GONÇALVES et al., 2006; FILGUEIRA, 2000).

A cultura da berinjela adapta-se, preferencialmente, em regiões de clima quente cujas temperaturas média variam entre 25-35°C (diurna) e com umidade relativa do ar de 80% (FILGUEIRA, 2000). Apesar de possuírem tolerância tanto à seca como a umidade excessiva, o cultivo da berinjela em períodos chuvosos e em solos com alta umidade não é adequado, pois favorecem a ocorrência da murcha-bacteriana, causada pela bactéria *Ralstonia solanacearum*. (RIBEIRO et al., 1998).

A murcha bacteriana causa grandes prejuízos significativos ao setor agrícola, é patógeno de mais de 50 famílias, dentre elas a Solanácea. Assim que a planta é infectada, a bactéria aloja-se no xilema, multiplica-se rapidamente e produz exsudados viscosos, os quais obstruem o vaso condutor, interrompendo o fluxo de seiva e água. Consequentemente, o sintoma mais característico desta doença é a murcha da planta de cima para baixo, principalmente, nas horas mais quentes do dia, recuperando-se à noite. Porém, com passar dos dias e avanço da doença, a mesma torna-se irreversível, levando a morte da planta (LOPES, 2009).

O controle para murcha bacteriana é complexo, devido a variabilidade genética, distribuição e capacidade de sobrevivência do patógeno no solo, pois possui inúmeros hospedeiros alternativos. Comumente, algumas medidas são adotadas na tentativa de reduzir a incidência da doença, porém sem garantia do controle, dentre elas: a rotação de culturas, o plantio em áreas novas e distantes dos locais de cultivos anteriores e os cuidados com a água de irrigação (UESUGI e TOMITA, 2002). O controle químico também é utilizado, porém ineficiente, pois não atinge camadas mais profundas do solo (LOPES, 2009). Nesse contexto, o uso de cultivares resistentes torna as práticas de controle mais eficientes, sendo considerada uma excelente alternativa. Dessa forma, o

objetivo do presente projeto é avaliar acessos de berinjela quanto a resistência à *R. solanacearum*.

2. OBJETIVOS

2.1 Objetivo geral

Avaliar a resistência à *Ralstonia solanacearum*em genótipos de berinjela para uso em programas de melhoramento genético de plantas voltados para a resistência a doenças.

2.2 Objetivos específicos

- Identificar acessos com resistência a bactéria Ralstonia solanacearum;
- Elucidar o comportamento da bactéria em acessos de berinjela em vista a interação patógeno-hospedeiro.

3. METODOLOGIA

3.1 Obtenção do material vegetal

Serão utilizados 13 acessos de berinjela oriundos do banco de germoplasma da EMBRAPA/CNPH, 7 híbridos oriundos do cruzamento entre esses acessos e como testemunha, a cultivar comercial Ciça (Tabela 1).

Tabela 1. Acessos de berinjela pertencente ao banco de germoplasma da EMBRAPA/CNPH.

Aces	Híbridos	
CNPH51	CNPH100	107x60
CNPH60	CNPH107	109x60
CNPH67	CNPH109	135x51
CNPH71	CNPH135	135x60
CNPH79	CNPH141	47x60
CNPH84	CNPH410	109x51
CNPH93		135x141

3.2 Avaliação de genótipos de berinjela quanto a resistência à murchabacteriana

O experimento foi conduzido em condição de casa de vegetação, pertencente ao Departamento de Agronomia da UFRPE. Foram utilizados 21 tratamentos (13 acessos, 7 híbridos, 1 cv comercial) e como testemunha a cultivar suscetível Ciça. O delineamento experimental será em blocos casualizados, contendo 3 blocos, com a parcela formada por 5 plantas.

A semeadura foi realizada em bandejas de poliestireno expandido de 128 células, contendo substrato comercial Basaplant[®]. Foram utilizadas três sementes por célula e após a emergência das plântulas foi realizado um desbaste, com o objetivo de estabelecer apenas uma planta por célula. Após 21 dias, as mudas foram transplantadas

para vasos plásticos de 500 ml contendo substrato a base de uma mistura de solo e húmus (3:1, v:v).

Para o preparo da suspensão de inóculo, os isolados bacterianos foram cultivados em meio TZC modificado (tetracloreto de trifeniltetrazólio) (KELMAN, 1954), por 48 h a 30 ± 2 °C, sendo transferida para meio ágar nutritivo-dextrose-extrato de levedura (NYDA) (10g dextrose, 3g extrato de carne, 5 g extrato de levedura, 3 g peptona e 18 g ágar 1^{-1}), suspensa em água destilada esterilizada (ADE). A concentração da suspensão foi ajustada para $5x10^8$ UFC ml-1 com fotocolorímetro (Analyser 500 M, Brasil).

Aos 30 dias, as plantas foram inoculadas pelo método do corte de raízes, fazendo-se com auxílio de um bisturi, um corte semicircular no substrato perto do caule da planta, no qual foram depositados 15 ml da suspensão bacteriana (5 x 10⁸ UFC ml⁻¹).

As avaliações foram realizadas no intervalo de dois dias, durante 20 dias. Cada planta foi avaliada quanto à presença e severidade dos sintomas com o auxílio da escala descritiva de notas variando de 0 a 4 (NIELSON e HAYNES, 1960), (Tabela 2).

Tabela 2. Parâmetros para avaliação da presença e severidade dos sintomas da murchabacteriana.

Classe do sintoma	Descrição dos sintomas		
0	Ausência de sintomas		
1	Plantas com 1/3 das folhas murchas		
2	Plantas com 2/3 das folhas murchas		
3	3 Plantas totalmente murchas4 Plantas mortas		
4			

A classificação dos genótipos de berinjela quanto a resistência à murchabacteriana foi determinada a partir do IMB (Índice de Murcha-Bacteriana) (Tabela 3).

O IMB será calculado da seguinte forma:

$$\sum (CSxP)/N$$

Onde,

CS= Classe dos sintomas,

P= Número de plantas em cada classe do sintoma

N= Número total de plantas inoculadas (GONÇALVES et al.,2014).

Tabela 3. Classificação da reação das plantas a *Ralstonia solanacearum* de acordo com o Índice de Murcha-Bacteriana.

IMB	Descrição	Reação
0,0 - 1,0	Resistente	R
>1,0 - 2,0	Moderadamente resistente	MR
>2,0 - 3,0	Moderadamente suscetível	MS
<3,0 - 4,0	Suscetível	S

Posteriormente, será realizada a análise de variância dos resultados e as médias serão agrupadas pelo teste de Scott-Knott a 5% de probabilidade.

4. RESULTADOS E DISCUSSÕES

Na tabela 4, encontra-se as médias da variável Índice de Murcha-Bacteriana (IMB), dos 20 genótipos de berinjela e da cultivar Ciça. Após 20 dias de avaliação, houve diferença significativa entre os genótipos para a variável avaliada e do total de 21 genótipos, doze foram classificados como resistentes, seis apresentaram resistência moderada e dois genótipos foram classificados como moderadamente suscetíveis.

Esses resultados demonstram, portanto, que 12 genótipos de berinjela da apresentam nível suficiente de resistência à murcha-bacteriana para ser usado como fonte de resistência em programas de melhoramento visando incorporar resistência à doença.

Tabela 4. Classificação de genótipos de berinjela quanto a resistência à murchabacteriana.

Tratamentos	IMB	Reação	Tratamentos	IMB	Reação
CNPH67	0.16a	R	CNPH60	0.91a	R
CNPH79	0.25a	R	135X51	1.14a	MR
CNPH84	0.50a	R	CNPH93	1.16a	MR
CNPH71	0.52a	R	107X60	1.33a	MR
CNPH135	0.58a	R	47x60	1.50a	MR
CNPH100	0.66a	R	109x51	1.80b	MR
CNPH410	0.69a	R	CNPH141	1.95b	MR
135X60	0.75a	R	109x60	2.66c	MS
CNPH109	0.83a	R	CNPH51	2.83c	MS
135X141	0.83a	R	Ciça	4.0d	S
CNPH107	0.83a	R	CV	28.05	

5. CONCLUSÕES

Os genótipos CNPH67, CNPH79, CNPH84, CNPH71, CNPH135, CNPH100, CNPH410, 4, CNPH109, 7 e CNPH107 foram classificados como resistentes à murcha bacteriana.

6. REFERÊNCIAS

ANTONINI, A.C.C.; ROBLES, W.G.R.; TESSARIOLI NETO, J.; KLUGE, R.A. Capacidade produtiva de cultivares de berinjela. **Horticultura Brasileira**, Brasília, v. 20, n. 4, p. 646-648, dezembro 2002.

FILGUEIRA, F.A.R. Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortalicas. Viçosa: UFV. 402 p. 2000.

GONÇALVES, M.C. R.; DINIZ, M.F.F. M.; DANTAS, A. H. G.; BORBA, J. R. C. MODESTO efeito hipolipemiante do extrato seco de berinjela (*Solanum melongena* L.) em mulheres dislepidemias, sob controle nutricional. **Revista Brasileira de Farmacognosia**, v.16, suplemento, p.656-663, 2006.

GONÇALVES, R.C.; VALLIM, J.H.; MACEDO, P.E.F.; BASTOS, R.M. Método de inoculação de *Ralstonia solanacearum* para a seleção de plantas de *Piper hispidinervum* resistentes à Murcha bacteriana. **Comunicado Técnico**. n.185, 2014.

KELMAN, A. The bacterial wilt caused by *Pseudomonas solanearum*: A literature review and bibliography. **Agricultural Experiment Technical Bulletin**, North Carolina, 1953. 194p.

LOPES, Carlos Alberto. Murcha bacteriana ou murchadeira - Uma inimiga do tomateiro em climas quentes. **Comunicado Técnico**. n.67, 2009.

NIELSON LW; HAYNES FL. 1960. Resistance in *Solanum tuberosum* to *Pseudomonas solanacearum*. *American PotatoJournal*37:260-267.

RIBEIRO, C.S.C.; BRUNE, S.; REIFSCHNEIDER, F.J.B.; Cultivo da berinjela (Solanum melongena L.). Instruções Técnicas da Embrapa Hortaliças. n.15, 1998.

UESUGI, C.H.; TOMITA, C.K.; Murcha bacteriana. Cultivar Hortaliças e Frutas, n. 11, 2002.

7. ANEXOS

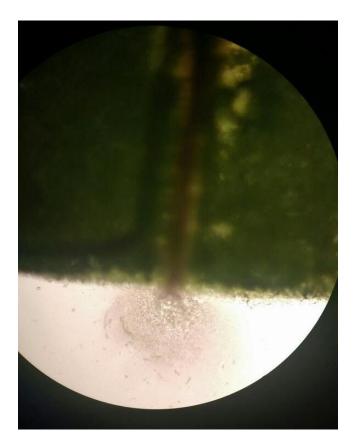


Figura 1. Sintomas da murcha-bacteriana em plantas de berinjela.

Figura 2. Sintomas da murcha-bacteriana em plantas de berinjela.

Figura 3. Variação de notas (0 e 4) em plantas de berinjela.

Figura 4. Experimento murcha-bacteriana x Berinjela

Figura 5. Colônias isoladas de R. solanacearum em meio TZC